Lodise Thomas P, McKinnon Peggy S, Rybak Michael
Anti-Infective Research Laboratory, Detroit Receiving Hospital, Wayne State University, 4201 St. Antoine Blvd, 1-B UHC, Detroit, MI 48201, USA.
Infect Control Hosp Epidemiol. 2003 Sep;24(9):655-61. doi: 10.1086/502269.
To identify institution-specific risk factors for MRSA bacteremia and develop an objective mechanism to estimate the probability of methicillin resistance in a given patient with Staphylococcus aureus bacteremia (SAB).
A cohort study was performed to identify institution-specific risk factors for MRSA. Logistic regression was used to model the likelihood of MRSA. A stepwise approach was employed to derive a parsimonious model. The MRSA prediction tool was developed from the final model.
A 279-bed, level 1 trauma center.
Between January 1, 1999, and June 30, 2001, 494 patients with clinically significant episodes of SAB were identified.
The MRSA rate was 45.5%. Of 18 characteristics included in the logistic regression, the only independent features for MRSA were prior antibiotic exposure (OR, 9.2; CI95, 4.8 to 17.9), hospital onset (OR, 3.0; CI95, 1.9 to 4.9), history of hospitalization (OR, 2.5; CI95, 1.5 to 3.8), and presence of decubitus ulcers (OR, 2.5; CI95, 1.2 to 4.9). The prediction tool was derived from the final model, which was shown to accurately reflect the actual MRSA distribution in the cohort.
Through multivariate modeling techniques, we were able to identify the most important determinants of MRSA at our institution and develop a tool to predict the probability of methicillin resistance in a patient with SAB. This knowledge can be used to guide empiric antibiotic selection. In the era of antibiotic resistance, such tools are essential to prevent indiscriminate antibiotic use and preserve the longevity of current antimicrobials.
确定特定机构耐甲氧西林金黄色葡萄球菌(MRSA)菌血症的危险因素,并开发一种客观机制来估计给定的金黄色葡萄球菌菌血症(SAB)患者中耐甲氧西林的概率。
进行一项队列研究以确定特定机构的MRSA危险因素。采用逻辑回归对MRSA的可能性进行建模。采用逐步方法得出一个简约模型。从最终模型开发出MRSA预测工具。
一家拥有279张床位的一级创伤中心。
在1999年1月1日至2001年6月30日期间,确定了494例有临床意义的SAB发作患者。
MRSA发生率为45.5%。在逻辑回归纳入的18个特征中,MRSA的唯一独立特征是既往抗生素暴露(比值比[OR],9.2;95%置信区间[CI95],4.8至17.9)、医院内发病(OR,3.0;CI95,1.9至4.9)、住院史(OR,2.5;CI95,1.5至3.8)以及存在褥疮(OR,2.5;CI95,1.2至4.9)。预测工具源自最终模型,该模型被证明能准确反映队列中实际的MRSA分布。
通过多变量建模技术,我们能够确定本机构MRSA的最重要决定因素,并开发出一种工具来预测SAB患者耐甲氧西林的概率。这些知识可用于指导经验性抗生素选择。在抗生素耐药时代,此类工具对于防止滥用抗生素和延长现有抗菌药物的使用寿命至关重要。