Suppr超能文献

关于甲酸脱氢酶和周质硝酸还原酶中高度保守的赖氨酸残基作用的诱变研究。

Mutagenesis study on the role of a lysine residue highly conserved in formate dehydrogenases and periplasmic nitrate reductases.

作者信息

Hettmann Thomas, Siddiqui Roman A, von Langen Johannes, Frey Christa, Romão Maria J, Diekmann Stephan

机构信息

Institute for Molecular Biotechnology, Beutenbergstr 11, Jena DE-07745, Germany.

出版信息

Biochem Biophys Res Commun. 2003 Oct 10;310(1):40-7. doi: 10.1016/j.bbrc.2003.08.114.

Abstract

Lysine 85 (K85) in the primary structure of the catalytic subunit of the periplasmic nitrate reductase (NAP-A) of Ralstonia eutropha H16 is highly conserved in periplasmic nitrate reductases and in the structurally related catalytic subunit of the formate dehydrogenases of various bacterial species. It is located between an [4Fe-4S] center and one of the molybdopterin-guanine dinucleotides mediating the through bonds electron flow to convert the specific substrate of the respective enzymes. To examine the role of K85, the structure of NAP-A of R. eutropha strain H16 was modeled on the basis of the crystal structure from the Desulfovibrio desulfuricans enzyme (Dias et al. Structure Fold Des. 7(1) (1999) 65) and K85 was replaced by site-directed mutagenesis, yielding K85R and K85M, respectively. The specific nitrate reductase activity was determined in periplasmic extracts. The mutant enzyme carrying K85R showed 23% of the wild-type activity, whereas the replacement by a polar, uncharged residue (K85M) resulted in complete loss of the catalytic activity. The reduced nitrate reductase activity of K85R was not due to different quantities of the expressed gene product, as controlled immunologically by NAP-specific antibodies. The results indicate that K85 is optimized for the electron transport flux to reduce nitrate to nitrite in NAP-A, and that the positive charge alone cannot meet further structural requirement for efficient electron flow.

摘要

嗜麦芽窄食单胞菌H16周质硝酸还原酶(NAP-A)催化亚基一级结构中的赖氨酸85(K85)在周质硝酸还原酶以及各种细菌物种甲酸脱氢酶的结构相关催化亚基中高度保守。它位于一个[4Fe-4S]中心和一个钼蝶呤-鸟嘌呤二核苷酸之间,介导贯穿键电子流以转化相应酶的特定底物。为了研究K85的作用,基于脱硫脱硫弧菌酶的晶体结构(Dias等人,《结构折叠与设计》,7(1) (1999) 65)对嗜麦芽窄食单胞菌菌株H16的NAP-A结构进行了建模,并通过定点诱变将K85分别替换为K85R和K85M。在周质提取物中测定了特定的硝酸还原酶活性。携带K85R的突变酶显示出野生型活性的23%,而被极性不带电荷的残基(K85M)取代则导致催化活性完全丧失。K85R的硝酸还原酶活性降低并非由于表达的基因产物数量不同,这通过NAP特异性抗体进行免疫控制得以证实。结果表明,K85针对NAP-A中硝酸盐还原为亚硝酸盐的电子传输通量进行了优化,并且仅正电荷无法满足有效电子流的进一步结构要求。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验