Geller Sue C, Gregg Jeff P, Hagerman Paul, Rocke David M
Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA.
Bioinformatics. 2003 Sep 22;19(14):1817-23. doi: 10.1093/bioinformatics/btg245.
Most methods of analyzing microarray data or doing power calculations have an underlying assumption of constant variance across all levels of gene expression. The most common transformation, the logarithm, results in data that have constant variance at high levels but not at low levels. Rocke and Durbin showed that data from spotted arrays fit a two-component model and Durbin, Hardin, Hawkins, and Rocke, Huber et al. and Munson provided a transformation that stabilizes the variance as well as symmetrizes and normalizes the error structure. We wish to evaluate the applicability of this transformation to the error structure of GeneChip microarrays.
We demonstrate in an example study a simple way to use the two-component model of Rocke and Durbin and the data transformation of Durbin, Hardin, Hawkins and Rocke, Huber et al. and Munson on Affymetrix GeneChip data. In addition we provide a method for normalization of Affymetrix GeneChips simultaneous with the determination of the transformation, producing a data set without chip or slide effects but with constant variance and with symmetric errors. This transformation/normalization process can be thought of as a machine calibration in that it requires a few biologically constant replicates of one sample to determine the constant needed to specify the transformation and normalize. It is hypothesized that this constant needs to be found only once for a given technology in a lab, perhaps with periodic updates. It does not require extensive replication in each study. Furthermore, the variance of the transformed pilot data can be used to do power calculations using standard power analysis programs.
SPLUS code for the transformation/normalization for four replicates is available from the first author upon request. A program written in C is available from the last author.
大多数分析微阵列数据或进行功效计算的方法都有一个潜在假设,即基因表达的所有水平上方差恒定。最常见的变换,即对数变换,会使数据在高水平时具有恒定方差,但在低水平时并非如此。罗克和德宾表明,点阵微阵列的数据符合双组分模型,德宾、哈丁、霍金斯以及罗克、胡贝尔等人和芒森提供了一种变换,该变换可稳定方差并使误差结构对称化和归一化。我们希望评估这种变换对基因芯片微阵列误差结构的适用性。
我们在一个示例研究中展示了一种简单方法,可将罗克和德宾的双组分模型以及德宾、哈丁、霍金斯和罗克、胡贝尔等人和芒森的数据变换应用于Affymetrix基因芯片数据。此外,我们提供了一种在确定变换的同时对Affymetrix基因芯片进行归一化的方法,从而生成一个没有芯片或载玻片效应、具有恒定方差且误差对称的数据集。这种变换/归一化过程可被视为一种机器校准,因为它需要对一个样本进行一些生物学上恒定的重复实验,以确定指定变换和归一化所需的常数。据推测,对于实验室中的给定技术,这个常数只需找到一次,可能需要定期更新。它不需要在每个研究中进行大量重复实验。此外,变换后的先导数据的方差可用于使用标准功效分析程序进行功效计算。
如有需要,可向第一作者索取用于四个重复样本的变换/归一化的SPLUS代码。最后一位作者提供了一个用C编写的程序。