Suppr超能文献

乳腺癌免疫组化激素受体状态的细胞图像分析

Cytometrical image analysis for immunohistochemical hormone receptor status in breast carcinomas.

作者信息

Hatanaka Yutaka, Hashizume Kaoru, Nitta Kazuo, Kato Tomoyuki, Itoh Ichiro, Tani Yoichi

机构信息

Department of Biomedical Science, DakoCytomation Co. Ltd, Shimogyo, Kyoto, Japan.

出版信息

Pathol Int. 2003 Oct;53(10):693-9. doi: 10.1046/j.1440-1827.2003.01547.x.

Abstract

A cytometrical image analyzing method for nuclear protein was established using WinROOF, a commercially available, inexpensive software, to determine the status of both estrogen and progesterone receptors. Immunohistochemical evaluation of estrogen receptors (ER) and progesterone receptors (PR) was performed with the anti-ER (clone 1D5) and the anti-PR (clone PgR636), respectively, combined with dextran polymer reagent EnVision+, all of which are approved in vitro diagnostics in Japan. The immunostained results were captured as digital images in Windows, and then analyzed in WinROOF with macroinstructions for analyzing each captured area either immunolabeled with chromogen or counterstained with hematoxylin. This image analysis method graded the immunostained nuclei of carcinoma cells based on staining intensities, and calculated the labeling index (LI) for both ER and PR. Furthermore, the LI correlated highly with the results from a histology score (HSCORE) when 20 breast carcinomas were quantified. Regarding ER, when 20% in the LI was considered as the cut-off point for positive, the positivity of ER in computer-assisted analysis was 75% (15 of 20 cases), and was completely concordant with that of HSCORE-based analysis. These results indicate that the cytometrical image analysis-based quantification could be appropriately applied to the objective determination of the immunohistochemical status of both ER and PR.

摘要

利用一款市售的廉价软件WinROOF建立了一种用于核蛋白的细胞计量图像分析方法,以确定雌激素和孕激素受体的状态。分别使用抗雌激素受体(ER)(克隆1D5)和抗孕激素受体(PR)(克隆PgR636)结合葡聚糖聚合物试剂EnVision+对雌激素受体(ER)和孕激素受体(PR)进行免疫组织化学评估,所有这些在日本均为批准的体外诊断试剂。免疫染色结果在Windows系统中捕获为数字图像,然后在WinROOF中使用宏指令进行分析,以分析每个捕获区域,该区域要么用显色剂进行免疫标记,要么用苏木精进行复染。这种图像分析方法根据染色强度对癌细胞的免疫染色细胞核进行分级,并计算ER和PR的标记指数(LI)。此外,对20例乳腺癌进行定量分析时,LI与组织学评分(HSCORE)结果高度相关。对于ER,当将LI中的20%作为阳性的截断点时,计算机辅助分析中ER的阳性率为75%(20例中的15例),与基于HSCORE的分析完全一致。这些结果表明,基于细胞计量图像分析的定量方法可适用于客观确定ER和PR的免疫组织化学状态。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验