Suppr超能文献

基于离散小波变换的微芯片毛细管电泳信号去噪与基线校正

Signal denoising and baseline correction by discrete wavelet transform for microchip capillary electrophoresis.

作者信息

Liu Bi-Feng, Sera Yoichi, Matsubara Norio, Otsuka Koji, Terabe Shigeru

机构信息

Graduate School of Science, Himeji Institute of Technology, Kamigori, Hyogo, Japan.

出版信息

Electrophoresis. 2003 Sep;24(18):3260-5. doi: 10.1002/elps.200305548.

Abstract

Signal denoising and baseline correction using discrete wavelet transform (DWT) are described for microchip capillary electrophoresis (MCE). DWT was performed on an electropherogram describing a separation of nine tetramethylrohodamine-5-isothiocyanate labeled amino acids, following MCE with laser-induced fluorescence detection, using Daubechies 5 wavelet at a decomposition level of 6. The denoising efficiency was compared with, and proved to be superior to, other commonly used denoising techniques such as Fourier transform, Savitzky-Golay smoothing and moving average, in terms of noise removal and peak preservation by directly visual inspection. Novel strategies for baseline correction were proposed, with a special interest in baseline drift that frequently occurred in chromatographic and electrophoretic separations.

摘要

描述了使用离散小波变换(DWT)对微芯片毛细管电泳(MCE)进行信号去噪和基线校正。在通过激光诱导荧光检测进行MCE之后,对描述九种异硫氰酸四甲基罗丹明标记氨基酸分离的电泳图进行DWT,使用Daubechies 5小波,分解级别为6。通过直接目视检查,在去除噪声和保留峰方面,将去噪效率与其他常用去噪技术(如傅里叶变换、Savitzky-Golay平滑和移动平均)进行了比较,并证明其更优。提出了基线校正的新策略,特别关注色谱和电泳分离中经常出现的基线漂移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验