Suppr超能文献

基于提升小波变换的心电图信号去噪

Electrocardiogram signals de-noising using lifting-based discrete wavelet transform.

作者信息

Erçelebi Ergun

机构信息

Department of Electrical and Electronics Engineering, University of Gaziantep, 27310-Gaziantep, Turkey.

出版信息

Comput Biol Med. 2004 Sep;34(6):479-93. doi: 10.1016/S0010-4825(03)00090-8.

Abstract

This paper introduces an effective technique for the denoising of electrocardiogram (ECG) signals corrupted by nonstationary noises. The technique is based on a second generation wavelet transform and level-dependent threshold estimator. Here, wavelet coefficients of ECG signals were obtained with lifting-based wavelet filters. A lifting scheme is used to construct second-generation wavelets and is an alternative and faster algorithm for a classical wavelet transform. The overall denoising performance of our proposed method is considered in relation to several measuring parameters, including types of wavelet filters (Haar, Daubechies 4 (DB4), Daubechies 6 (DB6), Filter(9-7), and Cubic B-splines), thresholding method, and decomposition depth. Three different kinds of noise were considered in this work: muscle artifact noise, electrode motion artifact noise, and white noise. Global performance is evaluated by means of the signal-to-noise ratio and visual inspection. Numerical results comparing the performance of the proposed method with that of nonlinear filtering techniques (median filter) are given. The results demonstrate consistently superior denoising performance of the proposed method over median filtering.

摘要

本文介绍了一种有效的技术,用于去除被非平稳噪声干扰的心电图(ECG)信号中的噪声。该技术基于第二代小波变换和基于层级的阈值估计器。在这里,通过基于提升的小波滤波器获得ECG信号的小波系数。提升方案用于构造第二代小波,是一种替代经典小波变换的更快算法。我们提出的方法的整体去噪性能是根据几个测量参数来考虑的,包括小波滤波器的类型(哈尔小波、达布希耶斯4小波(DB4)、达布希耶斯6小波(DB6)、9 - 7滤波器和三次B样条小波)、阈值处理方法和分解深度。在这项工作中考虑了三种不同类型的噪声:肌肉伪迹噪声、电极运动伪迹噪声和白噪声。通过信噪比和视觉检查来评估整体性能。给出了将所提出方法的性能与非线性滤波技术(中值滤波器)的性能进行比较的数值结果。结果表明,所提出的方法在去噪性能上始终优于中值滤波。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验