Suppr超能文献

人工智能在预测膀胱癌预后中的应用:神经模糊建模与人工神经网络的比较

Artificial intelligence in predicting bladder cancer outcome: a comparison of neuro-fuzzy modeling and artificial neural networks.

作者信息

Catto James W F, Linkens Derek A, Abbod Maysam F, Chen Minyou, Burton Julian L, Feeley Kenneth M, Hamdy Freddie C

机构信息

The Academic Urology Unit, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield S10 2JF, United Kingdom.

出版信息

Clin Cancer Res. 2003 Sep 15;9(11):4172-7.

Abstract

PURPOSE

New techniques for the prediction of tumor behavior are needed, because statistical analysis has a poor accuracy and is not applicable to the individual. Artificial intelligence (AI) may provide these suitable methods. Whereas artificial neural networks (ANN), the best-studied form of AI, have been used successfully, its hidden networks remain an obstacle to its acceptance. Neuro-fuzzy modeling (NFM), another AI method, has a transparent functional layer and is without many of the drawbacks of ANN. We have compared the predictive accuracies of NFM, ANN, and traditional statistical methods, for the behavior of bladder cancer.

EXPERIMENTAL DESIGN

Experimental molecular biomarkers, including p53 and the mismatch repair proteins, and conventional clinicopathological data were studied in a cohort of 109 patients with bladder cancer. For all three of the methods, models were produced to predict the presence and timing of a tumor relapse.

RESULTS

Both methods of AI predicted relapse with an accuracy ranging from 88% to 95%. This was superior to statistical methods (71-77%; P < 0.0006). NFM appeared better than ANN at predicting the timing of relapse (P = 0.073).

CONCLUSIONS

The use of AI can accurately predict cancer behavior. NFM has a similar or superior predictive accuracy to ANN. However, unlike the impenetrable "black-box" of a neural network, the rules of NFM are transparent, enabling validation from clinical knowledge and the manipulation of input variables to allow exploratory predictions. This technique could be used widely in a variety of areas of medicine.

摘要

目的

由于统计分析准确性差且不适用于个体,因此需要新的肿瘤行为预测技术。人工智能(AI)可能会提供适用的方法。虽然人工神经网络(ANN)作为研究最充分的AI形式已被成功应用,但其隐藏网络仍是其被接受的障碍。神经模糊建模(NFM)作为另一种AI方法,具有透明的功能层,且没有ANN的许多缺点。我们比较了NFM、ANN和传统统计方法对膀胱癌行为的预测准确性。

实验设计

在109例膀胱癌患者队列中研究了包括p53和错配修复蛋白在内的实验性分子生物标志物以及传统临床病理数据。对于所有三种方法,均建立了预测肿瘤复发的存在和时间的模型。

结果

两种AI方法预测复发的准确率在88%至95%之间。这优于统计方法(71%-77%;P<0.0006)。在预测复发时间方面,NFM似乎比ANN更好(P=0.073)。

结论

使用AI可以准确预测癌症行为。NFM具有与ANN相似或更高的预测准确性。然而,与神经网络难以理解的“黑匣子”不同,NFM的规则是透明的,能够根据临床知识进行验证,并可对输入变量进行操作以进行探索性预测。该技术可广泛应用于医学的各个领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验