Suppr超能文献

人工智能与膀胱癌阵列

Artificial intelligence and bladder cancer arrays.

作者信息

Wild P J, Catto J W F, Abbod M F, Linkens D A, Herr A, Pilarsky C, Wissmann C, Stoehr R, Denzinger S, Knuechel R, Hamdy F C, Hartmann A

机构信息

Institute of Surgical Pathology, University Hospital Zurich.

出版信息

Verh Dtsch Ges Pathol. 2007;91:308-19.

Abstract

Non-muscle invasive bladder cancer is a heterogenous disease whose management is dependent upon the risk of progression to muscle invasion. Although the recurrence rate is high, the majority of tumors are indolent and can be managed by endoscopic means alone. The prognosis of muscle invasion is poor and radical treatment is required if cure is to be obtained. Progression risk in non-invasive tumors is hard to determine at tumor diagnosis using current clinicopathological means. To improve the accuracy of progression prediction various biomarkers have been evaluated. To discover novel biomarkers several authors have used gene expression microarrays. Various statistical methods have been described to interpret array data, but to date no biomarkers have entered clinical practice. Here, we describe a new method of microarray analysis using neurofuzzy modeling (NFM), a form of artificial intelligence, and integrate it with artificial neural networks (ANN) to investigate non-muscle invasive bladder cancer array data (n=66 tumors). We develop a predictive panel of 11 genes, from 2800 expressed genes, that can significantly identify tumor progression (average Logrank p = 0.0288) in the analyzed cancers. In comparison, this panel appears superior to those genes chosen using traditional analyses (average Logrank p = 0.3455) and tumor grade (Logrank, p = 0.2475) in this non-muscle invasive cohort. We then analyze panel members in a new non-muscle invasive bladder cancer cohort (n=199) using immunohistochemistry with six commercially available antibodies. The combination of 6 genes (LIG3, TNFRSF6, KRT18, ICAM1, DSG2 and BRCA2) significantly stratifies tumor progression (Logrank p = 0.0096) in the new cohort. We discuss the benefits of the transparent NFM approach with respect to other reported methods.

摘要

非肌肉浸润性膀胱癌是一种异质性疾病,其治疗取决于进展为肌肉浸润的风险。尽管复发率很高,但大多数肿瘤生长缓慢,仅通过内镜手段即可治疗。肌肉浸润性膀胱癌的预后较差,若要治愈则需要进行根治性治疗。在肿瘤诊断时,使用当前的临床病理方法很难确定非浸润性肿瘤的进展风险。为了提高进展预测的准确性,人们评估了各种生物标志物。为了发现新的生物标志物,一些作者使用了基因表达微阵列。已经描述了各种统计方法来解释阵列数据,但迄今为止,尚无生物标志物进入临床实践。在此,我们描述了一种使用神经模糊建模(NFM)(一种人工智能形式)进行微阵列分析的新方法,并将其与人工神经网络(ANN)相结合,以研究非肌肉浸润性膀胱癌阵列数据(n = 66个肿瘤)。我们从2800个表达基因中开发了一个由11个基因组成的预测组,该预测组可以在分析的癌症中显著识别肿瘤进展(平均对数秩p = 0.0288)。相比之下,在这个非肌肉浸润性队列中,该预测组似乎优于使用传统分析方法选择的基因(平均对数秩p = 0.3455)和肿瘤分级(对数秩,p = 0.2475)。然后,我们使用六种市售抗体通过免疫组织化学分析了一个新的非肌肉浸润性膀胱癌队列(n = 199)中的预测组成员。6个基因(LIG3、TNFRSF6、KRT18、ICAM1、DSG2和BRCA2)的组合在新队列中显著区分了肿瘤进展(对数秩p = 0.0096)。我们讨论了透明的NFM方法相对于其他报道方法的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验