Bae Sun Sik, Cho Han, Mu James, Birnbaum Morris J
Howard Hughes Medical Institute, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
J Biol Chem. 2003 Dec 5;278(49):49530-6. doi: 10.1074/jbc.M306782200. Epub 2003 Sep 30.
Recent data have implicated the serine/threonine protein kinase Akt/protein kinase B (PKB) in a diverse array of physiological pathways, raising the question of how biological specificity is maintained. Partial clarification derived from the observation that mice deficient in either of the two isoforms, Akt1/PKBalpha or Akt2/PKBbeta, demonstrate distinct abnormalities, i.e. reduced organismal size or insulin resistance, respectively. However, the question still persists as to whether these divergent phenotypes are due exclusively to tissue-specific differences in isoform expression or distinct capacities for signaling intrinsic to the two proteins. Here we show that Akt2/PKBbeta-/- adipocytes derived from immortalized mouse embryo fibroblasts display significantly reduced insulin-stimulated hexose uptake, clearly establishing that the partial defect in glucose disposal in these mice derives from lack of a cell autonomous function of Akt2/PKBbeta. Moreover, in adipocytes differentiated from primary fibroblasts or immortalized mouse embryo fibroblasts, and brown preadipocytes the absence of Akt2/PKBbeta resulted in reduction of insulin-induced hexose uptake and glucose transporter 4 (GLUT4) translocation, whereas Akt1/PKBalpha was dispensable for this effect. Most importantly, hexose uptake and GLUT4 translocation were completely restored after re-expression of Akt2/PKBbeta in Akt2/PKBbeta-/- adipocytes, but overexpression of Akt1/PKBalpha at comparable levels was ineffective at rescuing insulin action to normal. These results show that the Akt1/PKBalpha and Akt2/PKBbeta isoforms are uniquely adapted to preferentially transmit distinct biological signals, and this property is likely to contribute significantly to the ability of Akt/PKB to play a role in diverse processes.
最近的数据表明,丝氨酸/苏氨酸蛋白激酶Akt/蛋白激酶B(PKB)参与了多种生理途径,这就引发了如何维持生物学特异性的问题。部分原因是观察到两种亚型Akt1/PKBα或Akt2/PKBβ中任一缺陷的小鼠表现出不同的异常,即分别为体型减小或胰岛素抵抗。然而,关于这些不同的表型是否仅仅是由于亚型表达的组织特异性差异或这两种蛋白质内在信号传导的不同能力,问题仍然存在。在这里,我们表明,源自永生化小鼠胚胎成纤维细胞的Akt2/PKBβ-/-脂肪细胞显示胰岛素刺激的己糖摄取显著降低,清楚地表明这些小鼠葡萄糖代谢的部分缺陷源于Akt2/PKBβ细胞自主功能的缺失。此外,在从原代成纤维细胞或永生化小鼠胚胎成纤维细胞以及棕色前脂肪细胞分化而来的脂肪细胞中,Akt2/PKBβ的缺失导致胰岛素诱导的己糖摄取和葡萄糖转运蛋白4(GLUT4)转位减少,而Akt1/PKBα对此效应是可有可无的。最重要的是,在Akt2/PKBβ-/-脂肪细胞中重新表达Akt2/PKBβ后,己糖摄取和GLUT4转位完全恢复,但以相当水平过表达Akt1/PKBα在将胰岛素作用恢复到正常水平方面无效。这些结果表明,Akt1/PKBα和Akt2/PKBβ亚型独特地适应于优先传递不同的生物信号,并且这种特性可能对Akt/PKB在多种过程中发挥作用的能力有显著贡献。