Schroeder Declan C, Jaffer Mohamed A, Coyne Vernon E
Department of Molecular and Cell Biology, University of Cape Town, South Africa.
Electron Microscope Unit, University of Cape Town, South Africa.
Microbiology (Reading). 2003 Oct;149(Pt 10):2919-2929. doi: 10.1099/mic.0.26513-0.
Gracilaria species are an important source of agar. The South African Gracilaria industry has experienced a number of setbacks over the last decade in the form of complete or partial die-offs of the agarophyte growing in Saldanha Bay, which may be attributed to bacterial infection. Since a positive correlation was observed between the presence of agarolytic epiphytes and bacterial pathogenicity, we investigated the role of an agarase in the virulence mechanism employed by a bacterium that elicits disease in Gracilaria gracilis. The recombinant plasmid pDA1, isolated from a Pseudoalteromonas gracilis B9 genomic library, was responsible for the agarolytic activity exhibited by Escherichia coli transformants when grown on solid medium. A BLAST search of the GenBank database showed that an 873 bp ORF (aagA) located on pDA1 had 85 % identity to the beta-agarase (dagA) from Pseudoalteromonas atlantica ATCC 19262(T) (or IAM 12927(T)) at the amino acid level. AagA was purified from the extracellular medium of an E. coli transformant harbouring pDA1 by using a combination of gel filtration and ion-exchange chromatography. AagA has an M(r) of 30 000 on SDS-PAGE. TLC of the digestion products of AagA showed that the enzyme cleaves the beta-(1,4) linkages of agarose to yield predominately neoagarotetraose. Western hybridization confirmed that the cloned agarase was in fact the extracellular beta-agarase of P. gracilis B9. The observed relationship between disease symptoms of G. gracilis and the agarolytic phenotype of P. gracilis B9 was confirmed. Transmission electron microscope examination of cross sections of both healthy G. gracilis and G. gracilis infected with P. gracilis, revealed a weakening of the cell structure in the latter plants. Immunogold-labelled antibodies localized the agarase in situ to the cell walls of bleached G. gracilis. Thus, the weakening observed in the cell structure of G. gracilis infected with P. gracilis can be attributed to degradation of the mucilaginous component of the cell wall of the bleached thalli.
江蓠属物种是琼脂的重要来源。在过去十年中,南非的江蓠产业经历了多次挫折,表现为萨尔达尼亚湾生长的产琼脂藻类出现全部或部分死亡,这可能归因于细菌感染。由于观察到琼脂分解附生植物的存在与细菌致病性之间存在正相关,我们研究了一种琼脂酶在一种能引起细基江蓠疾病的细菌所采用的致病机制中的作用。从纤细假交替单胞菌B9基因组文库中分离出的重组质粒pDA1,负责大肠杆菌转化体在固体培养基上生长时所表现出的琼脂分解活性。对GenBank数据库进行BLAST搜索显示,位于pDA1上的一个873 bp的开放阅读框(aagA)在氨基酸水平上与大西洋假交替单胞菌ATCC 19262(T)(或IAM 12927(T))的β-琼脂酶(dagA)有85%的同一性。通过凝胶过滤和离子交换色谱相结合的方法,从携带pDA1的大肠杆菌转化体的细胞外培养基中纯化出AagA。SDS-PAGE分析显示AagA的分子量为30 000。AagA消化产物的薄层层析表明,该酶能切割琼脂糖的β-(1,4)键,主要产生新琼脂四糖。蛋白质免疫印迹杂交证实,克隆的琼脂酶实际上是纤细假交替单胞菌B9的细胞外β-琼脂酶。细基江蓠的疾病症状与纤细假交替单胞菌B9的琼脂分解表型之间观察到的关系得到了证实。对健康细基江蓠和感染纤细假交替单胞菌的细基江蓠的横截面进行透射电子显微镜检查,发现后者植物的细胞结构有所减弱。免疫金标记抗体将琼脂酶原位定位到漂白细基江蓠的细胞壁上。因此,感染纤细假交替单胞菌的细基江蓠细胞结构中观察到的减弱可归因于漂白藻体细胞壁黏液成分的降解。