Fürtig Boris, Richter Christian, Wöhnert Jens, Schwalbe Harald
Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, Marie-Curie-Strasse 11, 60439 Frankfurt am Main, Germany.
Chembiochem. 2003 Oct 6;4(10):936-62. doi: 10.1002/cbic.200300700.
NMR spectroscopy is a powerful tool for studying proteins and nucleic acids in solution. This is illustrated by the fact that nearly half of all current RNA structures were determined by using NMR techniques. Information about the structure, dynamics, and interactions with other RNA molecules, proteins, ions, and small ligands can be obtained for RNA molecules up to 100 nucleotides. This review provides insight into the resonance assignment methods that are the first and crucial step of all NMR studies, into the determination of base-pair geometry, into the examination of local and global RNA conformation, and into the detection of interaction sites of RNA. Examples of NMR investigations of RNA are given by using several different RNA molecules to illustrate the information content obtainable by NMR spectroscopy and the applicability of NMR techniques to a wide range of biologically interesting RNA molecules.
核磁共振光谱学是研究溶液中蛋白质和核酸的强大工具。目前几乎一半的RNA结构是通过使用核磁共振技术确定的,这一事实说明了这一点。对于长度达100个核苷酸的RNA分子,可以获得有关其结构、动力学以及与其他RNA分子、蛋白质、离子和小配体相互作用的信息。本综述深入探讨了共振归属方法,这是所有核磁共振研究的首要关键步骤;探讨了碱基对几何结构的确定、局部和整体RNA构象的研究以及RNA相互作用位点的检测。通过使用几种不同的RNA分子给出了RNA的核磁共振研究示例,以说明通过核磁共振光谱可获得的信息内容以及核磁共振技术对广泛的具有生物学意义的RNA分子的适用性。