Brenk Ruth, Stubbs Milton T, Heine Andreas, Reuter Klaus, Klebe Gerhard
Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany.
Chembiochem. 2003 Oct 6;4(10):1066-77. doi: 10.1002/cbic.200300644.
The enzyme tRNA-guanine transglycosylase (TGT, EC 2.4.2.29) catalyses a base-exchange reaction that leads to anticodon modifications of certain tRNAs. The TGT enzymes of the eubacteria Zymomonas mobilis (Z. mobilis TGT) and Escherichia coli (E. coli TGT) show a different behaviour in the presence of competitive inhibitors. The active sites of both enzymes are identical apart from a single conservative amino acid exchange, namely Tyr106 of Z. mobilis TGT is replaced by a Phe in E. coli TGT. Although Tyr106 is, in contrast to Phe106, hydrogen bonded in the ligand-free structure, we can show by a mutational study of TGT(Y106F) that this is not the reason for the different responses upon competition. The TGT enzymes of various species differ in their substrate selectivity. Depending on the applied pH conditions and/or induced by ligand binding, a peptide-bond flip modulates the recognition properties of the substrate binding site, which changes between donor and acceptor functionality. Furthermore interstitial water molecules play an important role in these adaptations of the pocket. The flip of the peptide bond is further stabilised by a glutamate residue that operates as general acid/base. An active-site aspartate residue, presumed to operate as a nucleophile through covalent bonding during the base-exchange reaction, shows different conformations depending on the nature of the bound ligand. The induced-fit adaptations observed in the various TGT complex structures by multiple crystal-structure analyses are in agreement with the functional properties of the enzyme. In consequence, full understanding of this plasticity can be exploited for drug design.
酶tRNA-鸟嘌呤转糖基酶(TGT,EC 2.4.2.29)催化一种碱基交换反应,该反应导致某些tRNA的反密码子发生修饰。真细菌运动发酵单胞菌(运动发酵单胞菌TGT)和大肠杆菌(大肠杆菌TGT)的TGT酶在竞争性抑制剂存在下表现出不同的行为。除了一个单一的保守氨基酸交换外,这两种酶的活性位点是相同的,即运动发酵单胞菌TGT的Tyr106被大肠杆菌TGT中的苯丙氨酸取代。尽管与Phe106相比,Tyr106在无配体结构中形成氢键,但我们通过对TGT(Y106F)的突变研究表明,这不是竞争时产生不同反应的原因。不同物种的TGT酶在底物选择性上存在差异。根据所应用的pH条件和/或由配体结合诱导,肽键翻转调节底物结合位点的识别特性,该位点在供体和受体功能之间变化。此外,间隙水分子在口袋的这些适应性变化中起重要作用。肽键的翻转通过作为广义酸碱的谷氨酸残基进一步稳定。一个活性位点天冬氨酸残基,推测在碱基交换反应期间通过共价键作为亲核试剂起作用,根据结合配体的性质显示出不同的构象。通过多次晶体结构分析在各种TGT复合物结构中观察到的诱导契合适应性与该酶的功能特性一致。因此,对这种可塑性的充分理解可用于药物设计。