Stengl Bernhard, Reuter Klaus, Klebe Gerhard
Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany.
Chembiochem. 2005 Nov;6(11):1926-39. doi: 10.1002/cbic.200500063.
Transfer RNA-guanine transglycosylases (TGTs) are evolutionarily ancient enzymes, present in all kingdoms of life, catalyzing guanine exchange within their cognate tRNAs by modified 7-deazaguanine bases. Although distinct bases are incorporated into tRNA at different positions in a kingdom-specific manner, the catalytic subunits of TGTs are structurally well conserved. This review provides insight into the sequential steps along the reaction pathway, substrate specificity, and conformational adaptions of the binding pockets by comparison of TGT crystal structures in complex with RNA substrates of a eubacterial and an archaebacterial species. Substrate-binding modes indicate an evolutionarily conserved base-exchange mechanism with a conserved aspartate serving as a nucleophile through covalent binding to C1' of the guanosine ribose moiety in an intermediate state. A second conserved aspartate seems to control the spatial rearrangement of the ribose ring along the reaction pathway and supposedly operates as a general acid/base. Water molecules inside the binding pocket accommodating interaction sites subsequently occupied by polar atoms of substrates help to elucidate substrate-recognition and substrate-specificity features. This emphasizes the role of water molecules as general probes to map binding-site properties for structure-based drug design. Additionally, substrate-bound crystal structures allow the extraction of valuable information about the classification of the TGT superfamily into a subdivision of presumably homologous superfamilies adopting the triose-phosphate isomerase type barrel fold with a standard phosphate-binding motif.
转移RNA-鸟嘌呤转糖基酶(TGTs)是进化上古老的酶,存在于所有生命王国中,通过修饰的7-脱氮鸟嘌呤碱基催化其同源tRNA内的鸟嘌呤交换。尽管不同的碱基以特定王国的方式在tRNA的不同位置掺入,但TGTs的催化亚基在结构上高度保守。通过比较与真细菌和古细菌物种的RNA底物形成复合物的TGT晶体结构,本综述深入探讨了反应途径中的连续步骤、底物特异性以及结合口袋的构象适应性。底物结合模式表明了一种进化上保守的碱基交换机制,其中一个保守的天冬氨酸作为亲核试剂,通过在中间状态与鸟苷核糖部分的C1'共价结合。第二个保守的天冬氨酸似乎控制着核糖环在反应途径中的空间重排,并可能作为广义酸碱起作用。容纳随后被底物极性原子占据的相互作用位点的结合口袋内的水分子有助于阐明底物识别和底物特异性特征。这强调了水分子作为通用探针在基于结构的药物设计中绘制结合位点特性的作用。此外,底物结合的晶体结构允许提取有关将TGT超家族分类为采用具有标准磷酸结合基序的磷酸丙糖异构酶型桶状折叠的可能同源超家族细分的有价值信息。