Glinskii Olga V, Huxley Virginia H, Turk James R, Deutscher Susan L, Quinn Thomas P, Pienta Kenneth J, Glinsky Vladislav V
Department of Biochemistry, University of Missouri, Columbia, Missouri 65212, USA.
Clin Exp Metastasis. 2003;20(5):451-8. doi: 10.1023/a:1025449031136.
Recent studies suggest that only endothelium-attached malignant cells are capable of giving rise to hematogenous cancer metastases. Moreover, tumor cell adhesion to microvascular endothelium could be crucial in metastasis predilection to specific organs or tissues. However, the existing in vitro and in vivo techniques do not provide for sufficient delineation of distinct stages of a dynamic multi-step intravascular adhesion process. Here we report the development of an experimental system allowing for prolonged continuous ex vivo real-time observation of malignant cell adhesive interactions with perfused microvessels of a target organ in the context of its original tissue. Specifically, the vasculature of excised dura mater perfused with prostate cancer cells is described. An advantage of this technique is that selected fluorescently labeled tumor cells can be followed along identified vascular trees across the entire tissue specimen. The techniques provide for superior microvessel visualization and allow for uninterrupted monitoring and video recording of subsequent adhesion events such as rolling, docking (initial reversible adhesion), locking (irreversible adhesion), and flattening of metastatic cancer cells within perfused microvasculature on a single cell level. The results of our experiments demonstrate that intravascular adhesion of cancer cells differs dramatically from such of the leukocytes. Within dura microvessels perfused at physiological rate, non-interacting, floating, tumor cells move at velocities averaging 7.2 x 10(3) microm/s. Some tumor cells, similarly to leukocytes, exhibit rolling-like motion patterns prior to engaging into more stable adhesive interactions. In contrast, other neoplastic cells became stably adhered without rolling showing a rapid reduction in velocity from 2 x 10(3) to 0 microm/s within fractions of a second. The experimental system described herein, while developed originally for studying prostate cancer cell interactions with porcine dura mater microvasculature, offers great flexibility in adhesion experiments design and is easily adapted for use with a variety of other tissues including human.
最近的研究表明,只有附着在内皮上的恶性细胞才有能力引发血行性癌症转移。此外,肿瘤细胞与微血管内皮的黏附对于转移至特定器官或组织的倾向性可能至关重要。然而,现有的体外和体内技术无法充分描绘动态多步骤血管内黏附过程的不同阶段。在此,我们报告了一种实验系统的开发,该系统能够在目标器官的原始组织背景下,对恶性细胞与灌注微血管的黏附相互作用进行长时间的连续离体实时观察。具体而言,描述了用前列腺癌细胞灌注的切除硬脑膜的脉管系统。该技术的一个优点是,可以沿着整个组织标本中已识别的血管树追踪选定的荧光标记肿瘤细胞。这些技术提供了卓越的微血管可视化效果,并允许在单细胞水平上对灌注微血管内转移性癌细胞的后续黏附事件进行不间断的监测和视频记录,这些事件包括滚动、对接(初始可逆黏附)、锁定(不可逆黏附)以及扁平化。我们的实验结果表明,癌细胞的血管内黏附与白细胞的血管内黏附显著不同。在以生理速率灌注的硬脑膜微血管内,非相互作用的漂浮肿瘤细胞以平均7.2×10³微米/秒的速度移动。一些肿瘤细胞与白细胞类似,在进行更稳定的黏附相互作用之前表现出滚动样运动模式。相比之下,其他肿瘤细胞在没有滚动的情况下就稳定黏附,在几分之一秒内速度从2×10³微米/秒迅速降至0微米/秒。本文所述的实验系统虽然最初是为研究前列腺癌细胞与猪硬脑膜微血管的相互作用而开发的,但在黏附实验设计方面具有很大的灵活性,并且很容易适用于包括人类在内的多种其他组织。