Clatterbuck D M, Krenn C R, Cohen Marvin L, Morris J W
Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA.
Phys Rev Lett. 2003 Sep 26;91(13):135501. doi: 10.1103/PhysRevLett.91.135501. Epub 2003 Sep 23.
We have calculated the phonon spectra of aluminum as a function of strain using density functional perturbation theory for <110>, <100>, and <111> uniaxial tension, as well as relaxed <112>[111] shear. In all four cases, phonon instabilities occur at points away from the center of the Brillouin zone and intrude before the material becomes unstable according to elastic stability criteria. This is the first time the ideal strength of a metal has been shown to be dictated by instabilities in the acoustic phonon spectra. We go on to describe the crystallography of the unstable modes, all of which are shear in character. This work further suggests that shear failure is an inherent property of aluminum even in an initially dislocation-free perfect crystal.
我们使用密度泛函微扰理论计算了铝在<110>、<100>和<111>单轴拉伸以及弛豫<112>[111]剪切应变下的声子谱。在所有这四种情况下,声子不稳定性出现在远离布里渊区中心的点上,并且在材料根据弹性稳定性标准变得不稳定之前就已出现。这是首次表明金属的理想强度由声子谱中的不稳定性决定。我们接着描述了不稳定模式的晶体学特征,所有这些模式本质上都是剪切模式。这项工作进一步表明,即使在初始无位错的完美晶体中,剪切破坏也是铝的固有特性。