Tannenbaum Emmanuel, Deeds Eric J, Shakhnovich Eugene I
Harvard University, Cambridge, Massachusetts 02138, USA.
Phys Rev Lett. 2003 Sep 26;91(13):138105. doi: 10.1103/PhysRevLett.91.138105.
This Letter develops an analytically tractable model for determining the equilibrium distribution of mismatch repair deficient strains in unicellular populations. The approach is based on the single fitness peak model, which has been used in Eigen's quasispecies equations in order to understand various aspects of evolutionary dynamics. As with the quasispecies model, our model for mutator-nonmutator equilibrium undergoes a phase transition in the limit of infinite sequence length. This "repair catas-trophe" occurs at a critical repair error probability of epsilon(r)=L(via)/L, where L(via) denotes the length of the genome controlling viability, while L denotes the overall length of the genome. The repair catastrophe therefore occurs when the repair error probability exceeds the fraction of deleterious mutations. Our model also gives a quantitative estimate for the equilibrium fraction of mutators in Escherichia coli.
本信函建立了一个易于进行分析的模型,用于确定单细胞群体中错配修复缺陷菌株的平衡分布。该方法基于单适应度峰模型,该模型已用于艾根的准物种方程中,以理解进化动力学的各个方面。与准物种模型一样,我们的突变体-非突变体平衡模型在无限序列长度的极限情况下会经历一个相变。这种“修复灾难”发生在临界修复错误概率ε(r)=L(via)/L时,其中L(via)表示控制生存能力的基因组长度,而L表示基因组的总长度。因此,当修复错误概率超过有害突变的比例时,就会发生修复灾难。我们的模型还对大肠杆菌中突变体的平衡比例给出了定量估计。