de Araujo D B, Tedeschi W, Santos A C, Elias J, Neves U P C, Baffa O
Departamento de Fisica e Matematica, FFCLRP, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
Neuroimage. 2003 Sep;20(1):311-7. doi: 10.1016/s1053-8119(03)00306-9.
Event-related functional magnetic resonance imaging (ER-fMRI) refers to the blood oxygen level-dependent (BOLD) signal in response to a short stimulus followed by a long period of rest. These paradigms have become more popular in the last few years due to some advantages over standard block techniques. Most of the analysis of the time series generated in such exams is based on a model of specific hemodynamic response function. In this paper we propose a new method for the analysis of ER-fMRI based in a specific aspect of information theory: the entropy of a signal using the Shannon formulation, which makes no assumption about the shape of the response. The results show the ability to discriminate between activated and resting cerebral regions for motor and visual stimuli. Moreover, the results of simulated data show a more stable pattern of the method, if compared to typical algorithms, when the signal to noise ratio decreases.
事件相关功能磁共振成像(ER-fMRI)是指在短暂刺激后接着长时间休息时所产生的血氧水平依赖(BOLD)信号。由于相较于标准组块技术具有一些优势,这些范式在过去几年中变得更加流行。在此类检查中生成的时间序列的大多数分析是基于特定血流动力学响应函数的模型。在本文中,我们基于信息论的一个特定方面提出了一种用于分析ER-fMRI的新方法:使用香农公式计算信号的熵,该方法对响应的形状不做任何假设。结果表明该方法能够区分运动和视觉刺激下的激活脑区和静息脑区。此外,模拟数据的结果显示,与典型算法相比,当信噪比降低时,该方法具有更稳定的模式。