Rudge Simon A, Sciorra Vicki A, Iwamoto Michelle, Zhou Chun, Strahl Thomas, Morris Andrew J, Thorner Jeremy, Engebrecht JoAnne
Department of Cellular and Molecular Medicine, School of Medicine, and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093-0668, USA.
Mol Biol Cell. 2004 Jan;15(1):207-18. doi: 10.1091/mbc.e03-04-0245. Epub 2003 Oct 3.
During yeast sporulation, internal membrane synthesis ensures that each haploid nucleus is packaged into a spore. Prospore membrane formation requires Spo14p, a phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]-stimulated phospholipase D (PLD), which hydrolyzes phosphatidylcholine (PtdCho) to phosphatidic acid (PtdOH) and choline. We found that both meiosis and spore formation also require the phosphatidylinositol (PtdIns)/PtdCho transport protein Sec14p. Specific ablation of the PtdIns transport activity of Sec14p was sufficient to impair spore formation but not meiosis. Overexpression of Pik1p, a PtdIns 4-kinase, suppressed the sec14-1 meiosis and spore formation defects; conversely, pik1-ts diploids failed to undergo meiosis and spore formation. The PtdIns(4)P 5-kinase, Mss4p, also is essential for spore formation. Use of phosphoinositide-specific GFP-PH domain reporters confirmed that PtdIns(4,5)P2 is enriched in prospore membranes. sec14, pik1, and mss4 mutants displayed decreased Spo14p PLD activity, whereas absence of Spo14p did not affect phosphoinositide levels in vivo, suggesting that formation of PtdIns(4,5)P2 is important for Spo14p activity. Spo14p-generated PtdOH appears to have an essential role in sporulation, because treatment of cells with 1-butanol, which supports Spo14p-catalyzed PtdCho breakdown but leads to production of Cho and Ptd-butanol, blocks spore formation at concentrations where the inert isomer, 2-butanol, has little effect. Thus, rather than a role for PtdOH in stimulating PtdIns(4,5)P2 formation, our findings indicate that during sporulation, Spo14p-mediated PtdOH production functions downstream of Sec14p-, Pik1p-, and Mss4p-dependent PtdIns(4,5)P2 synthesis.
在酵母孢子形成过程中,内膜合成确保每个单倍体细胞核被包装到一个孢子中。前孢子膜的形成需要Spo14p,一种磷脂酰肌醇4,5-二磷酸[PtdIns(4,5)P2]刺激的磷脂酶D(PLD),它将磷脂酰胆碱(PtdCho)水解为磷脂酸(PtdOH)和胆碱。我们发现减数分裂和孢子形成都还需要磷脂酰肌醇(PtdIns)/PtdCho转运蛋白Sec14p。特异性消除Sec14p的PtdIns转运活性足以损害孢子形成,但不影响减数分裂。磷脂酰肌醇4-激酶Pik1p的过表达抑制了sec14-1的减数分裂和孢子形成缺陷;相反,pik1-ts二倍体无法进行减数分裂和孢子形成。磷脂酰肌醇(4)P 5-激酶Mss4p对孢子形成也至关重要。使用磷脂酰肌醇特异性的绿色荧光蛋白-PH结构域报告基因证实PtdIns(4,5)P2在前孢子膜中富集。sec14、pik1和mss4突变体的Spo14p PLD活性降低,而缺失Spo14p并不影响体内磷脂酰肌醇水平,这表明PtdIns(4,5)P2的形成对Spo14p活性很重要。Spo14p产生的PtdOH似乎在孢子形成中起关键作用,因为用1-丁醇处理细胞,1-丁醇支持Spo14p催化的PtdCho分解但导致胆碱和丁醇磷脂的产生,在惰性异构体2-丁醇几乎没有影响的浓度下阻断孢子形成。因此,我们的研究结果表明,在孢子形成过程中,Spo14p介导的PtdOH产生在Sec14p、Pik1p和Mss4p依赖的PtdIns(4,5)P2合成下游起作用,而不是PtdOH在刺激PtdIns(4,5)P2形成中起作用。