Suppr超能文献

The gating and conductance properties of Cav3.2 low-voltage-activated T-type calcium channels.

作者信息

Kaku Toshihiko, Lee Tae-Seong, Arita Makoto, Hadama Tetsuo, Ono Katsushige

机构信息

Department of Cardiovascular Science, Oita Medical University, 1-1 Idaigaoka, Hasama, Oita, 879-5593 Japan.

出版信息

Jpn J Physiol. 2003 Jun;53(3):165-72. doi: 10.2170/jjphysiol.53.165.

Abstract

Calcium channels are essential for excitation-contraction coupling and pacemaker potentials in cardiac muscle cells. Whereas L-type Ca(2+) channels have been extensively studied, T-type channels have been poorly characterized in cardiac myocytes. We describe here the functional properties of recombinant Ca(V)3.2 T-type Ca(2+) channels expressed in mammalian cell lines. The T-type Ca(2+) current showed a rapid activation and an inactivation phase in response to depolarization, and it displayed a window current over the voltage range from -60 to -40 mV in 1 to 10 mM external Ca(2+). Barium (Ba(2+)) and strontium (Sr(2+)) permeate the channel with similar activation kinetics. On the other hand, monovalent cations, Li(+) and Na(+), permeate the T-type Ca(2+) channel more easily than the L-type Ca(2+) channel. The permeability order of the Ca(V)3.2 T-type Ca(2+) channel among monovalent and divalent cations was determined as Ba(2+)>Mn(2+)>Ca(2+)>Sr(2+)>Li(+1)>Na(+) with the permeability order of 1.39:1.25:1.00:0.95:0.55:0.29. The ionic conductance sequence for cations relative to calcium was Sr(2+)>Ba(2+)>Ca(2+)>Li(+1)>Mn(2+)>Na(+) with the conductance ratio of 1.39:1.21:1.00:0.40:0.23:0.11. The permeation profile of manganese (Mn(2+)) is complex. Mn(2+) permeates the Ca(2+) channel with a permeability similar to Ca(2+) or Ba(2+), but with a much smaller current density, resulting in a much smaller conductance. The properties relating to progression and recovery from inactivation in the Ca(V)3.2 channel are substantially identical with either Ca(2+) or Ba(2+) as the charge carrier.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验