Suppr超能文献

CaV3.1(α1G)T型钙通道中的渗透与门控:Ca2+、Ba2+、Mg2+和Na+的影响

Permeation and gating in CaV3.1 (alpha1G) T-type calcium channels effects of Ca2+, Ba2+, Mg2+, and Na+.

作者信息

Khan Nilofar, Gray I Patrick, Obejero-Paz Carlos A, Jones Stephen W

机构信息

Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA.

出版信息

J Gen Physiol. 2008 Aug;132(2):223-38. doi: 10.1085/jgp.200809986.

Abstract

We examined the concentration dependence of currents through Ca(V)3.1 T-type calcium channels, varying Ca(2+) and Ba(2+) over a wide concentration range (100 nM to 110 mM) while recording whole-cell currents over a wide voltage range from channels stably expressed in HEK 293 cells. To isolate effects on permeation, instantaneous current-voltage relationships (IIV) were obtained following strong, brief depolarizations to activate channels with minimal inactivation. Reversal potentials were described by P(Ca)/P(Na) = 87 and P(Ca)/P(Ba) = 2, based on Goldman-Hodgkin-Katz theory. However, analysis of chord conductances found that apparent K(d) values were similar for Ca(2+) and Ba(2+), both for block of currents carried by Na(+) (3 muM for Ca(2+) vs. 4 muM for Ba(2+), at -30 mV; weaker at more positive or negative voltages) and for permeation (3.3 mM for Ca(2+) vs. 2.5 mM for Ba(2+); nearly voltage independent). Block by 3-10 muM Ca(2+) was time dependent, described by bimolecular kinetics with binding at approximately 3 x 10(8) M(-1)s(-1) and voltage-dependent exit. Ca(2+)(o), Ba(2+)(o), and Mg(2+)(o) also affected channel gating, primarily by shifting channel activation, consistent with screening a surface charge of 1 e(-) per 98 A(2) from Gouy-Chapman theory. Additionally, inward currents inactivated approximately 35% faster in Ba(2+)(o) (vs. Ca(2+)(o) or Na(+)(o)). The accelerated inactivation in Ba(2+)(o) correlated with the transition from Na(+) to Ba(2+) permeation, suggesting that Ba(2+)(o) speeds inactivation by occupying the pore. We conclude that the selectivity of the "surface charge" among divalent cations differs between calcium channel families, implying that the surface charge is channel specific. Voltage strongly affects the concentration dependence of block, but not of permeation, for Ca(2+) or Ba(2+).

摘要

我们研究了通过Ca(V)3.1 T型钙通道的电流对浓度的依赖性,在很宽的浓度范围(100 nM至110 mM)内改变Ca(2+)和Ba(2+)浓度,同时在从稳定表达于HEK 293细胞中的通道记录的很宽电压范围内记录全细胞电流。为了分离对通透的影响,在进行强的、短暂的去极化以激活通道且使其失活最小化之后,获得瞬时电流-电压关系(IIV)。根据戈德曼-霍奇金- Katz理论,反转电位由P(Ca)/P(Na) = 87和P(Ca)/P(Ba) = 2描述。然而,弦电导分析发现,对于Ca(2+)和Ba(2+),表观K(d)值相似,无论是对于由Na(+)携带的电流的阻断(在-30 mV时,Ca(2+)为3 μM,Ba(2+)为4 μM;在更正或更负的电压下较弱)还是对于通透(Ca(2+)为3.3 mM,Ba(2+)为2.5 mM;几乎与电压无关)。3 - 10 μM Ca(2+)的阻断具有时间依赖性,由双分子动力学描述,结合速率约为3×10(8) M(-1)s(-1)且具有电压依赖性的解离。Ca(2+)(o)、Ba(2+)(o)和Mg(2+)(o)也影响通道门控,主要是通过改变通道激活,这与根据古依-查普曼理论每98 A(2)屏蔽1个e(-)的表面电荷一致。此外,在Ba(2+)(o)中内向电流的失活速度比在Ca(2+)(o)或Na(+)(o)中快约35%。Ba(2+)(o)中加速的失活与从Na(+)通透到Ba(2+)通透的转变相关,表明Ba(2+)(o)通过占据孔道加速失活。我们得出结论,钙通道家族中二价阳离子之间“表面电荷”的选择性不同,这意味着表面电荷是通道特异性的。电压强烈影响Ca(2+)或Ba(2+)的阻断对浓度的依赖性,但不影响通透对浓度的依赖性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9156/2483336/cc23ed885db8/jgp1320223f01.jpg

相似文献

5
Ni2+ block of CaV3.1 (alpha1G) T-type calcium channels.
J Gen Physiol. 2008 Aug;132(2):239-50. doi: 10.1085/jgp.200809988.
7
Mg(2+) block unmasks Ca(2+)/Ba(2+) selectivity of alpha1G T-type calcium channels.
Biophys J. 2000 Dec;79(6):3052-62. doi: 10.1016/S0006-3495(00)76540-4.
8
Permeation and gating properties of the L-type calcium channel in mouse pancreatic beta cells.
J Gen Physiol. 1993 May;101(5):767-97. doi: 10.1085/jgp.101.5.767.
9
Sodium and calcium channels in bovine chromaffin cells.
J Physiol. 1982 Oct;331:599-635. doi: 10.1113/jphysiol.1982.sp014394.
10
Cd²⁺ block and permeation of CaV3.1 (α1G) T-type calcium channels: candidate mechanism for Cd²⁺ influx.
Mol Pharmacol. 2012 Dec;82(6):1183-93. doi: 10.1124/mol.112.080176. Epub 2012 Sep 12.

引用本文的文献

1
Low-voltage-activated inward current in murine antral smooth muscle cells is an artifact.
Am J Physiol Cell Physiol. 2021 Jun 1;320(6):C966-C973. doi: 10.1152/ajpcell.00031.2021. Epub 2021 Mar 31.
2
Ca2.3 channel function and Zn-induced modulation: potential mechanisms and (patho)physiological relevance.
Channels (Austin). 2020 Dec;14(1):362-379. doi: 10.1080/19336950.2020.1829842.
3
Analgesic transient receptor potential vanilloid-1-active compounds inhibit native and recombinant T-type calcium channels.
Br J Pharmacol. 2019 Jul;176(13):2264-2278. doi: 10.1111/bph.14676. Epub 2019 May 16.
4
Evolutionary insights into T-type Ca channel structure, function, and ion selectivity from the homologue.
J Gen Physiol. 2017 Apr 3;149(4):483-510. doi: 10.1085/jgp.201611683. Epub 2017 Mar 22.
6
Characterization of slow waves generated by myenteric interstitial cells of Cajal of the rabbit small intestine.
Am J Physiol Gastrointest Liver Physiol. 2015 Mar 1;308(5):G378-88. doi: 10.1152/ajpgi.00308.2014. Epub 2014 Dec 24.
7
Voltage control of Ca²⁺ permeation through N-type calcium (Ca(V)2.2) channels.
J Gen Physiol. 2014 Sep;144(3):207-20. doi: 10.1085/jgp.201411201. Epub 2014 Aug 11.
9
Models of calcium permeation through T-type channels.
Pflugers Arch. 2014 Apr;466(4):635-44. doi: 10.1007/s00424-013-1437-3. Epub 2014 Jan 22.
10
Role of outer-pore residue Y380 in U-type inactivation of KV2.1 channels.
J Membr Biol. 2013 Aug;246(8):633-45. doi: 10.1007/s00232-013-9577-0. Epub 2013 Jun 28.

本文引用的文献

1
The electrical double layer and the theory of electrocapillarity.
Chem Rev. 1947 Dec;41(3):441-501. doi: 10.1021/cr60130a002.
2
Ni2+ block of CaV3.1 (alpha1G) T-type calcium channels.
J Gen Physiol. 2008 Aug;132(2):239-50. doi: 10.1085/jgp.200809988.
4
Selectivity signatures of three isoforms of recombinant T-type Ca2+ channels.
Biochim Biophys Acta. 2007 Jun;1768(6):1406-19. doi: 10.1016/j.bbamem.2007.02.017. Epub 2007 Mar 1.
5
Evidence for common structural determinants of activation and inactivation in T-type Ca2+ channels.
Pflugers Arch. 2006 Nov;453(2):189-201. doi: 10.1007/s00424-006-0129-7. Epub 2006 Sep 6.
6
The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel.
J Chem Phys. 2006 Jul 21;125(3):34901. doi: 10.1063/1.2212423.
7
Amino acid substitutions in the pore of the Ca(V)1.2 calcium channel reduce barium currents without affecting calcium currents.
Biophys J. 2005 Sep;89(3):1731-43. doi: 10.1529/biophysj.104.058875. Epub 2005 Jun 24.
8
Y3+ block demonstrates an intracellular activation gate for the alpha1G T-type Ca2+ channel.
J Gen Physiol. 2004 Dec;124(6):631-40. doi: 10.1085/jgp.200409167.
9
Some precautions in using chelators to buffer metals in biological solutions.
Cell Calcium. 2004 May;35(5):427-31. doi: 10.1016/j.ceca.2003.10.006.
10
Calcium channels: unanswered questions.
J Bioenerg Biomembr. 2003 Dec;35(6):461-75. doi: 10.1023/b:jobb.0000008020.86004.28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验