Suppr超能文献

使用进化历史的序列比对和配对隐马尔可夫模型。

Sequence alignments and pair hidden Markov models using evolutionary history.

作者信息

Knudsen Bjarne, Miyamoto Michael M

机构信息

Department of Zoology, Box 118525, University of Florida, Gainesville, FL 32611-8525, USA.

出版信息

J Mol Biol. 2003 Oct 17;333(2):453-60. doi: 10.1016/j.jmb.2003.08.015.

Abstract

This work presents a novel pairwise statistical alignment method based on an explicit evolutionary model of insertions and deletions (indels). Indel events of any length are possible according to a geometric distribution. The geometric distribution parameter, the indel rate, and the evolutionary time are all maximum likelihood estimated from the sequences being aligned. Probability calculations are done using a pair hidden Markov model (HMM) with transition probabilities calculated from the indel parameters. Equations for the transition probabilities make the pair HMM closely approximate the specified indel model. The method provides an optimal alignment, its likelihood, the likelihood of all possible alignments, and the reliability of individual alignment regions. Human alpha and beta-hemoglobin sequences are aligned, as an illustration of the potential utility of this pair HMM approach.

摘要

这项工作提出了一种基于明确的插入和缺失(indel)进化模型的新型成对统计比对方法。根据几何分布,任何长度的插入缺失事件都是可能的。几何分布参数、插入缺失率和进化时间均根据正在比对的序列进行最大似然估计。概率计算使用成对隐马尔可夫模型(HMM),其转移概率根据插入缺失参数计算得出。转移概率方程使成对HMM紧密近似指定的插入缺失模型。该方法提供了最优比对、其似然性、所有可能比对的似然性以及各个比对区域的可靠性。作为这种成对HMM方法潜在效用的一个例证,对人类α和β血红蛋白序列进行了比对。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验