Suppr超能文献

氧化亚铁硫杆菌对亚砷酸盐和三价铁的固定作用及其与酸性矿山废水的关系

Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage.

作者信息

Duquesne K, Lebrun S, Casiot C, Bruneel O, Personné J-C, Leblanc M, Elbaz-Poulichet F, Morin G, Bonnefoy V

机构信息

Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et de Microbiologie, C.N.R.S., UPR9043, Marseille, France.

出版信息

Appl Environ Microbiol. 2003 Oct;69(10):6165-73. doi: 10.1128/AEM.69.10.6165-6173.2003.

Abstract

Weathering of the As-rich pyrite-rich tailings of the abandoned mining site of Carnoulès (southeastern France) results in the formation of acid waters heavily loaded with arsenic. Dissolved arsenic present in the seepage waters precipitates within a few meters from the bottom of the tailing dam in the presence of microorganisms. An Acidithiobacillus ferrooxidans strain, referred to as CC1, was isolated from the effluents. This strain was able to remove arsenic from a defined synthetic medium only when grown on ferrous iron. This A. ferrooxidans strain did not oxidize arsenite to arsenate directly or indirectly. Strain CC1 precipitated arsenic unexpectedly as arsenite but not arsenate, with ferric iron produced by its energy metabolism. Furthermore, arsenite was almost not found adsorbed on jarosite but associated with a poorly ordered schwertmannite. Arsenate is known to efficiently precipitate with ferric iron and sulfate in the form of more or less ordered schwertmannite, depending on the sulfur-to-arsenic ratio. Our data demonstrate that the coprecipitation of arsenite with schwertmannite also appears as a potential mechanism of arsenite removal in heavily contaminated acid waters. The removal of arsenite by coprecipitation with ferric iron appears to be a common property of the A. ferrooxidans species, as such a feature was observed with one private and three collection strains, one of which was the type strain.

摘要

法国东南部卡尔努莱斯废弃矿场富含砷和黄铁矿的尾矿风化,导致形成富含大量砷的酸性水。渗流水中的溶解砷在尾矿坝底部数米内,在微生物存在的情况下沉淀。从废水中分离出一种氧化亚铁硫杆菌菌株,称为CC1。该菌株只有在以亚铁为生长底物时,才能从特定的合成培养基中去除砷。这种氧化亚铁硫杆菌菌株不会直接或间接将亚砷酸盐氧化为砷酸盐。CC1菌株意外地以亚砷酸盐而非砷酸盐的形式沉淀砷,是通过其能量代谢产生的三价铁实现的。此外,几乎未发现亚砷酸盐吸附在黄钾铁矾上,而是与一种无序的施氏矿物有关。已知砷酸盐能与三价铁和硫酸盐以或多或少有序的施氏矿物形式有效沉淀,这取决于硫与砷的比例。我们的数据表明,亚砷酸盐与施氏矿物的共沉淀也似乎是受严重污染酸性水中亚砷酸盐去除的一种潜在机制。亚砷酸盐与三价铁共沉淀去除似乎是氧化亚铁硫杆菌属的一个共同特性,因为在一株私有菌株和三株保藏菌株中观察到了这一特征,其中一株是模式菌株。

相似文献

1
Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage.
Appl Environ Microbiol. 2003 Oct;69(10):6165-73. doi: 10.1128/AEM.69.10.6165-6173.2003.
3
Characterization of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus ferrooxidans from Hutti gold leachate and effluents.
Bioresour Technol. 2008 Nov;99(16):7514-20. doi: 10.1016/j.biortech.2008.02.019. Epub 2008 Mar 25.
4
Formation and stability of biogenic tooeleite during Fe(II) oxidation by Acidithiobacillus ferrooxidans.
Mater Sci Eng C Mater Biol Appl. 2020 Jun;111:110755. doi: 10.1016/j.msec.2020.110755. Epub 2020 Feb 18.
5
Isolation, identification and arsenic-resistance of Acidithiobacillus ferrooxidans HX3 producing schwertmannite.
J Environ Sci (China). 2014 Jul;26(7):1463-70. doi: 10.1016/j.jes.2014.05.012. Epub 2014 Jun 16.
6
Effects of chloride acclimation on iron oxyhydroxides and cell morphology during cultivation of Acidithiobacillus ferrooxidans.
Environ Sci Technol. 2011 Jan 1;45(1):235-40. doi: 10.1021/es1019146. Epub 2010 Dec 3.
8
Arsenic(III) biotransformation to tooeleite associated with the oxidation of Fe(II) via Acidithiobacillus ferrooxidans.
Chemosphere. 2020 Jun;248:126080. doi: 10.1016/j.chemosphere.2020.126080. Epub 2020 Feb 1.
9
The nature of Schwertmannite and Jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability.
Mater Sci Eng C Mater Biol Appl. 2013 Jul 1;33(5):2679-85. doi: 10.1016/j.msec.2013.02.026. Epub 2013 Feb 24.

引用本文的文献

5
Biogeochemical Niches of Fe-Cycling Communities Influencing Heavy Metal Transport along the Rio Tinto, Spain.
Appl Environ Microbiol. 2022 Feb 22;88(4):e0229021. doi: 10.1128/AEM.02290-21. Epub 2021 Dec 15.
6
Dynamics of Bacterial Communities Mediating the Treatment of an As-Rich Acid Mine Drainage in a Field Pilot.
Front Microbiol. 2018 Dec 21;9:3169. doi: 10.3389/fmicb.2018.03169. eCollection 2018.
7
Adaptation in toxic environments: comparative genomics of loci carrying antibiotic resistance genes derived from acid mine drainage waters.
Environ Sci Pollut Res Int. 2018 Jan;25(2):1470-1483. doi: 10.1007/s11356-017-0535-8. Epub 2017 Oct 31.
8
Characterization of Thiomonas delicata arsenite oxidase expressed in Escherichia coli.
3 Biotech. 2017 Jun;7(2):97. doi: 10.1007/s13205-017-0740-7. Epub 2017 May 30.

本文引用的文献

1
Occurrences at mineral-bacteria interface during oxidation of arsenopyrite by Thiobacillus ferrooxidans.
Biotechnol Bioeng. 1995 Apr 5;46(1):13-21. doi: 10.1002/bit.260460103.
2
Role of Ferrous Ions in Synthetic Cobaltous Sulfide Leaching of Thiobacillus ferrooxidans.
Appl Environ Microbiol. 1984 Sep;48(3):461-7. doi: 10.1128/aem.48.3.461-467.1984.
5
Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France).
Water Res. 2003 Jul;37(12):2929-36. doi: 10.1016/S0043-1354(03)00080-0.
9
Microbial detoxification of metals and radionuclides.
Curr Opin Biotechnol. 2001 Jun;12(3):248-53. doi: 10.1016/s0958-1669(00)00207-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验