Duret Sybille, Berho Nathalie, Danet Jean-Luc, Garnier Monique, Renaudin Joël
UMR Génomique Développement et Pouvoir Pathogène, IBVM, Centre INRA de Bordeaux, 33883 Villenave d'Ornon Cedex, France.
Appl Environ Microbiol. 2003 Oct;69(10):6225-34. doi: 10.1128/AEM.69.10.6225-6234.2003.
Spiralin is the most abundant protein at the surface of the plant pathogenic mollicute Spiroplasma citri and hence might play a role in the interactions of the spiroplasma with its host plant and/or its insect vector. To study spiralin function, mutants were produced by inactivating the spiralin gene through homologous recombination. A spiralin-green fluorescent protein (GFP) translational fusion was engineered and introduced into S. citri by using an oriC-based targeting vector. According to the strategy used, integration of the plasmid by a single-crossover recombination at the spiralin gene resulted in the expression of the spiralin-GFP fusion protein. Two distinct mutants were isolated. Western and colony immunoblot analyses showed that one mutant (GII3-9a5) did produce the spiralin-GFP fusion protein, which was found not to fluoresce, whereas the other (GII3-9a2) produced neither the fusion protein nor the wild-type spiralin. Both mutants displayed helical morphology and motility, similarly to the wild-type strain GII-3. Genomic DNA analyses revealed that GII3-9a5 was unstable and that GII3-9a2 was probably derived from GII3-9a5 by a double-crossover recombination between plasmid sequences integrated into the GII3-9a5 chromosome and free plasmid. When injected into the leafhopper vector Circulifer haematoceps, the spiralinless mutant GII3-9a2 multiplied to high titers in the insects (1.1 x 10(6) to 2.8 x 10(6) CFU/insect) but was transmitted to the host plant 100 times less efficiently than the wild-type strain. As a result, not all plants were infected, and symptom production in these plants was delayed for 2 to 4 weeks compared to that in the wild-type strain. In the infected plants however, the mutant multiplied to high titers (1.2 x 10(6) to 1.4 x 10(7) CFU/g of midribs) and produced the typical symptoms of the disease. These results indicate that spiralin is not essential for pathogenicity but is required for efficient transmission of S. citri by its insect vector.
螺旋蛋白是植物病原支原体柑橘螺原体表面含量最丰富的蛋白质,因此可能在螺原体与其寄主植物和/或昆虫介体的相互作用中发挥作用。为了研究螺旋蛋白的功能,通过同源重组使螺旋蛋白基因失活来产生突变体。构建了一个螺旋蛋白 - 绿色荧光蛋白(GFP)翻译融合体,并使用基于oriC的靶向载体将其导入柑橘螺原体。根据所采用的策略,质粒通过在螺旋蛋白基因处的单交换重组进行整合,导致螺旋蛋白 - GFP融合蛋白的表达。分离出了两个不同的突变体。蛋白质免疫印迹和菌落免疫印迹分析表明,一个突变体(GII3 - 9a5)确实产生了螺旋蛋白 - GFP融合蛋白,但发现其不发荧光,而另一个突变体(GII3 - 9a2)既不产生融合蛋白也不产生野生型螺旋蛋白。与野生型菌株GII - 3一样,这两个突变体均呈现螺旋形态并具有运动性。基因组DNA分析表明,GII3 - 9a5不稳定,而GII3 - 9a2可能是通过整合到GII3 - 9a5染色体中的质粒序列与游离质粒之间的双交换重组从GII3 - 9a5衍生而来。当将无螺旋蛋白的突变体GII3 - 9a2注射到叶蝉介体血叶蝉中时,它在昆虫体内大量繁殖(每只昆虫1.1×10⁶至2.8×10⁶CFU),但传播到寄主植物的效率比野生型菌株低100倍。结果,并非所有植物都被感染,与野生型菌株相比,这些植物中的症状出现延迟了2至4周。然而,在被感染的植物中,突变体大量繁殖(每克中脉1.2×10⁶至1.4×10⁷CFU)并产生了该病的典型症状。这些结果表明,螺旋蛋白对于致病性并非必不可少,但对于柑橘螺原体通过其昆虫介体的有效传播是必需的。