Suppr超能文献

基因组进化的简单随机生死模型:我们有足够的时间进化吗?

Simple stochastic birth and death models of genome evolution: was there enough time for us to evolve?

作者信息

Karev Georgy P, Wolf Yuri I, Koonin Eugene V

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

出版信息

Bioinformatics. 2003 Oct 12;19(15):1889-900. doi: 10.1093/bioinformatics/btg351.

Abstract

MOTIVATION

The distributions of many genome-associated quantities, including the membership of paralogous gene families can be approximated with power laws. We are interested in developing mathematical models of genome evolution that adequately account for the shape of these distributions and describe the evolutionary dynamics of their formation.

RESULTS

We show that simple stochastic models of genome evolution lead to power-law asymptotics of protein domain family size distribution. These models, called Birth, Death and Innovation Models (BDIM), represent a special class of balanced birth-and-death processes, in which domain duplication and deletion rates are asymptotically equal up to the second order. The simplest, linear BDIM shows an excellent fit to the observed distributions of domain family size in diverse prokaryotic and eukaryotic genomes. However, the stochastic version of the linear BDIM explored here predicts that the actual size of large paralogous families is reached on an unrealistically long timescale. We show that introduction of non-linearity, which might be interpreted as interaction of a particular order between individual family members, allows the model to achieve genome evolution rates that are much better compatible with the current estimates of the rates of individual duplication/loss events.

摘要

动机

包括旁系同源基因家族成员在内的许多与基因组相关的量的分布都可以用幂律来近似。我们有兴趣开发基因组进化的数学模型,这些模型能够充分考虑这些分布的形状,并描述其形成的进化动力学。

结果

我们表明,基因组进化的简单随机模型会导致蛋白质结构域家族大小分布的幂律渐近性。这些模型,称为出生、死亡和创新模型(BDIM),代表了一类特殊的平衡生死过程,其中结构域复制和删除率在二阶以内渐近相等。最简单的线性BDIM与不同原核生物和真核生物基因组中观察到的结构域家族大小分布拟合得非常好。然而,这里探索的线性BDIM的随机版本预测,大型旁系同源家族的实际大小在不切实际的长时间尺度上才能达到。我们表明,引入非线性,这可以解释为个体家族成员之间特定阶次的相互作用,使模型能够实现与当前个体复制/丢失事件速率估计更相符的基因组进化速率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验