National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America.
PLoS Comput Biol. 2011 Aug;7(8):e1002173. doi: 10.1371/journal.pcbi.1002173. Epub 2011 Aug 25.
Research in quantitative evolutionary genomics and systems biology led to the discovery of several universal regularities connecting genomic and molecular phenomic variables. These universals include the log-normal distribution of the evolutionary rates of orthologous genes; the power law-like distributions of paralogous family size and node degree in various biological networks; the negative correlation between a gene's sequence evolution rate and expression level; and differential scaling of functional classes of genes with genome size. The universals of genome evolution can be accounted for by simple mathematical models similar to those used in statistical physics, such as the birth-death-innovation model. These models do not explicitly incorporate selection; therefore, the observed universal regularities do not appear to be shaped by selection but rather are emergent properties of gene ensembles. Although a complete physical theory of evolutionary biology is inconceivable, the universals of genome evolution might qualify as "laws of evolutionary genomics" in the same sense "law" is understood in modern physics.
定量进化基因组学和系统生物学的研究发现了几个将基因组和分子表型变量联系起来的普遍规律。这些普遍性包括:直系同源基因进化速率的对数正态分布;各种生物网络中旁系家族大小和节点度的幂律分布;基因序列进化速率与表达水平之间的负相关;以及功能类基因与基因组大小的差异缩放。基因组进化的普遍性可以用类似于统计物理学中使用的简单数学模型来解释,例如诞生-死亡-创新模型。这些模型没有明确包含选择;因此,观察到的普遍规律似乎不是由选择塑造的,而是基因集合的涌现特性。虽然完整的进化生物学物理理论是不可思议的,但基因组进化的普遍性可能符合“进化基因组学定律”,就像现代物理学中理解“定律”一样。