Boon Elizabeth M, Livingston Alison L, Chmiel Nikolas H, David Sheila S, Barton Jacqueline K
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12543-7. doi: 10.1073/pnas.2035257100. Epub 2003 Oct 14.
MutY, like many DNA base excision repair enzymes, contains a [4Fe4S]2+ cluster of undetermined function. Electrochemical studies of MutY bound to a DNA-modified gold electrode demonstrate that the [4Fe4S] cluster of MutY can be accessed in a DNA-mediated redox reaction. Although not detectable without DNA, the redox potential of DNA-bound MutY is approximately 275 mV versus NHE, which is characteristic of HiPiP iron proteins. Binding to DNA is thus associated with a change in [4Fe4S]3+/2+ potential, activating the cluster toward oxidation. Given that DNA charge transport chemistry is exquisitely sensitive to perturbations in base pair structure, such as mismatches, we propose that this redox process of MutY bound to DNA exploits DNA charge transport and provides a DNA signaling mechanism to scan for mismatches and lesions in vivo.
与许多DNA碱基切除修复酶一样,MutY含有一个功能尚未确定的[4Fe4S]2+簇。对结合到DNA修饰金电极上的MutY进行的电化学研究表明,MutY的[4Fe4S]簇可在DNA介导的氧化还原反应中被利用。虽然在没有DNA的情况下无法检测到,但与DNA结合的MutY的氧化还原电位相对于标准氢电极约为275 mV,这是高电位铁蛋白的特征。因此,与DNA的结合与[4Fe4S]3+/2+电位的变化相关,使该簇易于被氧化。鉴于DNA电荷传输化学对碱基对结构的扰动(如错配)极为敏感,我们提出,与DNA结合的MutY的这种氧化还原过程利用了DNA电荷传输,并提供了一种DNA信号传导机制,以在体内扫描错配和损伤。