Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States.
Department of Chemistry, University of California Davis , Davis, California 95616, United States.
Langmuir. 2017 Mar 14;33(10):2523-2530. doi: 10.1021/acs.langmuir.6b04581. Epub 2017 Mar 2.
Escherichia coli endonuclease III (EndoIII) and MutY are DNA glycosylases that contain [4Fe4S] clusters and that serve to maintain the integrity of the genome after oxidative stress. Electrochemical studies on highly oriented pyrolytic graphite (HOPG) revealed that DNA binding by EndoIII leads to a large negative shift in the midpoint potential of the cluster, consistent with stabilization of the oxidized [4Fe4S] form. However, the smooth, hydrophobic HOPG surface is nonideal for working with proteins in the absence of DNA. In this work, we use thin film voltammetry on a pyrolytic graphite edge electrode to overcome these limitations. Improved adsorption leads to substantial signals for both EndoIII and MutY in the absence of DNA, and a large negative potential shift is retained with DNA present. In contrast, the EndoIII mutants E200K, Y205H, and K208E, which provide electrostatic perturbations in the vicinity of the cluster, all show DNA-free potentials within error of wild type; similarly, the presence of negatively charged poly-l-glutamate does not lead to a significant potential shift. Overall, binding to the DNA polyanion is the dominant effect in tuning the redox potential of the [4Fe4S] cluster, helping to explain why all DNA-binding proteins with [4Fe4S] clusters studied to date have similar DNA-bound potentials.
大肠杆菌内切核酸酶 III(EndoIII)和MutY 是含有 [4Fe4S] 簇的 DNA 糖苷酶,它们在氧化应激后有助于维持基因组的完整性。在高度取向的热解石墨(HOPG)上的电化学研究表明,EndoIII 与 DNA 的结合导致簇的中点电位发生很大的负移,这与氧化的 [4Fe4S] 形式的稳定一致。然而,光滑、疏水的 HOPG 表面在没有 DNA 的情况下不利于与蛋白质一起使用。在这项工作中,我们使用热解石墨边缘电极上的薄膜伏安法来克服这些限制。在没有 DNA 的情况下,两种酶(EndoIII 和 MutY)的吸附都得到了显著改善,并且在存在 DNA 的情况下保留了很大的负电位移动。相比之下,在簇附近提供静电扰动的 EndoIII 突变体 E200K、Y205H 和 K208E,其 DNA 自由电位在误差范围内与野生型相同;同样,带负电荷的多聚 L-谷氨酸的存在也不会导致明显的电位移动。总体而言,与 DNA 多阴离子的结合是调节 [4Fe4S] 簇氧化还原电位的主要效应,有助于解释为什么迄今为止研究的所有带有 [4Fe4S] 簇的与 DNA 结合的蛋白质都具有相似的 DNA 结合电位。