Suppr超能文献

[4Fe4S] 簇在碱基切除修复蛋白中的电化学:用 DNA 调节氧化还原电位。

Electrochemistry of the [4Fe4S] Cluster in Base Excision Repair Proteins: Tuning the Redox Potential with DNA.

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States.

Department of Chemistry, University of California Davis , Davis, California 95616, United States.

出版信息

Langmuir. 2017 Mar 14;33(10):2523-2530. doi: 10.1021/acs.langmuir.6b04581. Epub 2017 Mar 2.

Abstract

Escherichia coli endonuclease III (EndoIII) and MutY are DNA glycosylases that contain [4Fe4S] clusters and that serve to maintain the integrity of the genome after oxidative stress. Electrochemical studies on highly oriented pyrolytic graphite (HOPG) revealed that DNA binding by EndoIII leads to a large negative shift in the midpoint potential of the cluster, consistent with stabilization of the oxidized [4Fe4S] form. However, the smooth, hydrophobic HOPG surface is nonideal for working with proteins in the absence of DNA. In this work, we use thin film voltammetry on a pyrolytic graphite edge electrode to overcome these limitations. Improved adsorption leads to substantial signals for both EndoIII and MutY in the absence of DNA, and a large negative potential shift is retained with DNA present. In contrast, the EndoIII mutants E200K, Y205H, and K208E, which provide electrostatic perturbations in the vicinity of the cluster, all show DNA-free potentials within error of wild type; similarly, the presence of negatively charged poly-l-glutamate does not lead to a significant potential shift. Overall, binding to the DNA polyanion is the dominant effect in tuning the redox potential of the [4Fe4S] cluster, helping to explain why all DNA-binding proteins with [4Fe4S] clusters studied to date have similar DNA-bound potentials.

摘要

大肠杆菌内切核酸酶 III(EndoIII)和MutY 是含有 [4Fe4S] 簇的 DNA 糖苷酶,它们在氧化应激后有助于维持基因组的完整性。在高度取向的热解石墨(HOPG)上的电化学研究表明,EndoIII 与 DNA 的结合导致簇的中点电位发生很大的负移,这与氧化的 [4Fe4S] 形式的稳定一致。然而,光滑、疏水的 HOPG 表面在没有 DNA 的情况下不利于与蛋白质一起使用。在这项工作中,我们使用热解石墨边缘电极上的薄膜伏安法来克服这些限制。在没有 DNA 的情况下,两种酶(EndoIII 和 MutY)的吸附都得到了显著改善,并且在存在 DNA 的情况下保留了很大的负电位移动。相比之下,在簇附近提供静电扰动的 EndoIII 突变体 E200K、Y205H 和 K208E,其 DNA 自由电位在误差范围内与野生型相同;同样,带负电荷的多聚 L-谷氨酸的存在也不会导致明显的电位移动。总体而言,与 DNA 多阴离子的结合是调节 [4Fe4S] 簇氧化还原电位的主要效应,有助于解释为什么迄今为止研究的所有带有 [4Fe4S] 簇的与 DNA 结合的蛋白质都具有相似的 DNA 结合电位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/654c/5423460/5123e8380576/nihms856917f1.jpg

相似文献

6
DNA-mediated charge transport for DNA repair.用于DNA修复的DNA介导的电荷传输。
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12543-7. doi: 10.1073/pnas.2035257100. Epub 2003 Oct 14.

引用本文的文献

3
Redox-Guided DNA Scanning by the Dynamic Repair Enzyme Endonuclease III.动态修复酶内切核酸酶III的氧化还原引导DNA扫描
Biochemistry. 2025 Feb 18;64(4):782-790. doi: 10.1021/acs.biochem.4c00621. Epub 2025 Feb 4.
5
UvrC Coordinates an O-Sensitive [4Fe4S] Cofactor.UvrC 协调 O 敏感性 [4Fe4S] 辅因子。
J Am Chem Soc. 2020 Jun 24;142(25):10964-10977. doi: 10.1021/jacs.0c01671. Epub 2020 Jun 12.
9
Effective Distance for DNA-Mediated Charge Transport between Repair Proteins.DNA介导的修复蛋白间电荷转移的有效距离
ACS Cent Sci. 2019 Jan 23;5(1):65-72. doi: 10.1021/acscentsci.8b00566. Epub 2019 Jan 11.
10
Yeast require redox switching in DNA primase.酵母在 DNA 引发酶中需要氧化还原转换。
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):13186-13191. doi: 10.1073/pnas.1810715115. Epub 2018 Dec 12.

本文引用的文献

1
DNA Charge Transport: from Chemical Principles to the Cell.DNA 电荷输运:从化学原理到细胞。
Cell Chem Biol. 2016 Jan 21;23(1):183-197. doi: 10.1016/j.chembiol.2015.11.010.
4
Multiplexed electrochemistry of DNA-bound metalloproteins.DNA 结合金属蛋白的多重电化学
J Am Chem Soc. 2013 Aug 14;135(32):11869-78. doi: 10.1021/ja4041779. Epub 2013 Jul 30.
6
Overview of base excision repair biochemistry.碱基切除修复生物化学概述。
Curr Mol Pharmacol. 2012 Jan;5(1):3-13. doi: 10.2174/1874467211205010003.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验