Hallab Nadim, Link Helmut D, McAfee Paul C
Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois, USA.
Spine (Phila Pa 1976). 2003 Oct 15;28(20):S139-52. doi: 10.1097/01.BRS.0000092214.87225.80.
Knowledge gained through the clinical history of total joint replacement materials combined with the current promise of new biomaterials provides improved guidelines for biomaterial selection in total disc arthroplasty.
The following will detail: 1) current biomaterials technology; 2) how current designs of total disc arthroplasty seek to optimize implant performance through judicious biomaterial selection; and 3) what technical obstacles and clinical concerns remain.
Metals and polymers remain the central material components of state-of-the-art total joint arthroplasties. Polymers provide low friction surfaces for articulating bearings and some degree of shock absorption. Metals provide appropriate material properties such as high strength, ductility, fracture toughness, hardness, corrosion resistance, formability, and biocompatibility necessary for use in load-bearing roles required total disc replacement. There are three principal metal alloys used in orthopaedics and particularly in total joint replacement: 1) titanium based alloys; 2) cobalt based alloys; and 3) stainless steel alloys. Alloy specific differences in strength, ductility, and hardness generally determine which of these three alloys is used for a particular application or implant component.
Current designs. Two examples of current lumbar (Charitè and Prodisc) and cervical (Bryan and Prestige) disc replacements are compared. The similarities and differences in the biomaterials used for each demonstrate prevailing consensus and some idea of how to best optimize implant performance through biomaterial selection.
The primary factors governing total disc arthroplasty biomaterials are similar to those of all total joint arthroplasties: generation of wear debris is the primary source of implant degradation, and the subsequent tissue reaction to such debris is the primary factor limiting the longevity of joint replacement prostheses. Particulate debris generated by wear, fretting, or fragmentation induces the formation of an inflammatory reaction, which at a certain point promotes a foreign-body granulation tissue response that has the ability to invade the bone-implant interface. This commonly results in progressive, local bone loss that threatens the fixation of both cemented and cementless devices alike. All metal alloy implants corrode in vivo. When severe, the degradative process may reduce structural integrity of the implant, and the release of corrosion products is potentially toxic to the host. The corrosion resistance of implant alloys is primarily due to the formation of passive oxide films to prevent significant electrochemical dissolution from taking place. The result of this knowledge is a consensus of opinion as to which materials are best suited for use in current total disc arthroplasty designs, where most total disc replacement designs incorporate cobalt-chromium-molybdenum alloy endplates articulating internally on a relatively soft polymeric core and externally coated with titanium or titanium alloy for enhanced bone fixation.
通过全关节置换材料的临床病史所获得的知识,结合新型生物材料当前展现出的前景,为全椎间盘置换术中生物材料的选择提供了更完善的指导原则。
以下将详细阐述:1)当前的生物材料技术;2)当前全椎间盘置换的设计如何通过明智地选择生物材料来优化植入物性能;以及3)仍然存在哪些技术障碍和临床问题。
金属和聚合物仍然是最先进的全关节置换术的核心材料成分。聚合物为关节轴承提供低摩擦表面并具有一定程度的减震作用。金属具备诸如高强度、延展性、断裂韧性、硬度、耐腐蚀性、可成型性以及生物相容性等合适的材料特性,这些特性是全椎间盘置换所需的承重作用所必需的。骨科领域,尤其是全关节置换中主要使用三种金属合金:1)钛基合金;2)钴基合金;3)不锈钢合金。合金在强度、延展性和硬度方面的特定差异通常决定了这三种合金中哪一种用于特定应用或植入部件。
当前设计。比较了当前两种腰椎(Charitè和Prodisc)和颈椎(Bryan和Prestige)椎间盘置换的实例。每种置换所使用生物材料的异同体现了普遍共识,以及关于如何通过选择生物材料来最佳优化植入物性能的一些思路。
全椎间盘置换生物材料的主要影响因素与所有全关节置换的因素相似:磨损碎屑的产生是植入物降解的主要来源,随后组织对这些碎屑的反应是限制关节置换假体使用寿命的主要因素。磨损、微动或破碎产生的颗粒碎屑会引发炎症反应,在某一时刻会促进异物肉芽组织反应,这种反应能够侵入骨 - 植入物界面。这通常会导致渐进性的局部骨质流失,危及有骨水泥和无骨水泥装置的固定。所有金属合金植入物在体内都会发生腐蚀。严重时,降解过程可能会降低植入物的结构完整性,腐蚀产物的释放可能对宿主有毒。植入合金的耐腐蚀性主要归因于形成了钝化氧化膜以防止显著的电化学溶解发生。基于这些知识得出的结果是,对于哪些材料最适合用于当前全椎间盘置换设计形成了共识,在大多数全椎间盘置换设计中,采用钴铬钼合金终板,其在相对柔软的聚合物核心内部相互连接,并在外部涂覆钛或钛合金以增强骨固定。