Suppr超能文献

对蛔虫精子运动机制的剖析揭示了参与基于主要精子蛋白的阿米巴样运动的关键蛋白。

Dissection of the Ascaris sperm motility machinery identifies key proteins involved in major sperm protein-based amoeboid locomotion.

作者信息

Buttery Shawnna M, Ekman Gail C, Seavy Margaret, Stewart Murray, Roberts Thomas M

机构信息

Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA.

出版信息

Mol Biol Cell. 2003 Dec;14(12):5082-8. doi: 10.1091/mbc.e03-04-0246. Epub 2003 Oct 17.

Abstract

Although Ascaris sperm motility closely resembles that seen in many other types of crawling cells, the lamellipodial dynamics that drive movement result from modulation of a cytoskeleton based on the major sperm protein (MSP) rather than actin. The dynamics of the Ascaris sperm cytoskeleton can be studied in a cell-free in vitro system based on the movement of plasma membrane vesicles by fibers constructed from bundles of MSP filaments. In addition to ATP, MSP, and a plasma membrane protein, reconstitution of MSP motility in this cell-free extract requires cytosolic proteins that orchestrate the site-specific assembly and bundling of MSP filaments that generates locomotion. Here, we identify a fraction of cytosol that is comprised of a small number of proteins but contains all of the soluble components required to assemble fibers. We have purified two of these proteins, designated MSP fiber proteins (MFPs) 1 and 2 and demonstrated by immunolabeling that both are located in the MSP cytoskeleton in cells and in fibers. These proteins had reciprocal effects on fiber assembly in vitro: MFP1 decreased the rate of fiber growth, whereas MFP2 increased the growth rate.

摘要

尽管蛔虫精子的运动与许多其他类型的爬行细胞非常相似,但驱动运动的片状伪足动力学是由基于主要精子蛋白(MSP)而非肌动蛋白的细胞骨架调节产生的。蛔虫精子细胞骨架的动力学可以在无细胞体外系统中进行研究,该系统基于由MSP细丝束构成的纤维对质膜囊泡的运动。除了ATP、MSP和一种质膜蛋白外,在这种无细胞提取物中重建MSP运动还需要胞质蛋白,这些蛋白协调MSP细丝的位点特异性组装和成束,从而产生运动。在这里,我们鉴定出一部分胞质溶胶,它由少量蛋白质组成,但包含组装纤维所需的所有可溶性成分。我们纯化了其中两种蛋白质,命名为MSP纤维蛋白(MFP)1和2,并通过免疫标记证明它们都位于细胞和纤维中的MSP细胞骨架中。这些蛋白质在体外对纤维组装有相反的作用:MFP1降低了纤维生长速率,而MFP2提高了生长速率。

相似文献

2
Structure of MFP2 and its function in enhancing MSP polymerization in Ascaris sperm amoeboid motility.
J Mol Biol. 2005 Apr 1;347(3):583-95. doi: 10.1016/j.jmb.2005.01.054.
3
Reconstitution in vitro of MSP-based filopodium extension in nematode sperm.
Cell Motil Cytoskeleton. 2007 Apr;64(4):235-47. doi: 10.1002/cm.20177.
6
Role of major sperm protein (MSP) in the protrusion and retraction of Ascaris sperm.
Int Rev Cell Mol Biol. 2012;297:265-93. doi: 10.1016/B978-0-12-394308-8.00007-8.
8
How the assembly dynamics of the nematode major sperm protein generate amoeboid cell motility.
Int Rev Cytol. 2001;202:1-34. doi: 10.1016/s0074-7696(01)02002-2.
9
Structural basis for amoeboid motility in nematode sperm.
Nat Struct Biol. 1998 Mar;5(3):184-9. doi: 10.1038/nsb0398-184.

引用本文的文献

1
RNAi-dependent expression of sperm genes in ADL chemosensory neurons is required for olfactory responses in .
Front Mol Biosci. 2024 Jul 11;11:1396587. doi: 10.3389/fmolb.2024.1396587. eCollection 2024.
2
NHR-23 and SPE-44 regulate distinct sets of genes during Caenorhabditis elegans spermatogenesis.
G3 (Bethesda). 2022 Nov 4;12(11). doi: 10.1093/g3journal/jkac256.
3
MFP1/MSD-1 and MFP2/NSPH-2 co-localize with MSP during spermatogenesis.
MicroPubl Biol. 2021 Jul 22;2021. doi: 10.17912/micropub.biology.000427. eCollection 2021.
5
Liver fluke infection and cholangiocarcinoma: a review.
Parasitol Res. 2017 Jan;116(1):11-19. doi: 10.1007/s00436-016-5276-y. Epub 2016 Oct 8.
6
COMP-1 promotes competitive advantage of nematode sperm.
Elife. 2015 Mar 19;4:e05423. doi: 10.7554/eLife.05423.
7
Extending the molecular clutch beyond actin-based cell motility.
New J Phys. 2014 Oct;16(10). doi: 10.1088/1367-2630/16/10/105012.
8
The regulation of spermatogenesis and sperm function in nematodes.
Semin Cell Dev Biol. 2014 May;29:17-30. doi: 10.1016/j.semcdb.2014.04.005. Epub 2014 Apr 6.
10
An analysis of the transcriptome of Teladorsagia circumcincta: its biological and biotechnological implications.
BMC Genomics. 2012;13 Suppl 7(Suppl 7):S10. doi: 10.1186/1471-2164-13-S7-S10. Epub 2012 Dec 13.

本文引用的文献

2
Cellular motility driven by assembly and disassembly of actin filaments.
Cell. 2003 Feb 21;112(4):453-65. doi: 10.1016/s0092-8674(03)00120-x.
3
Cell motility: proline-rich proteins promote protrusions.
Trends Cell Biol. 2001 Jan;11(1):38-46. doi: 10.1016/s0962-8924(00)01876-6.
4
How the assembly dynamics of the nematode major sperm protein generate amoeboid cell motility.
Int Rev Cytol. 2001;202:1-34. doi: 10.1016/s0074-7696(01)02002-2.
5
Molecular mechanisms controlling actin filament dynamics in nonmuscle cells.
Annu Rev Biophys Biomol Struct. 2000;29:545-76. doi: 10.1146/annurev.biophys.29.1.545.
7
Actin machinery: pushing the envelope.
Curr Opin Cell Biol. 2000 Feb;12(1):104-12. doi: 10.1016/s0955-0674(99)00063-0.
9
Endocytic vesicles move at the tips of actin tails in cultured mast cells.
Nat Cell Biol. 1999 May;1(1):72-4. doi: 10.1038/9048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验