Suppr超能文献

混合营养生物通过综合资源利用在竞争中胜过专性生物:对水生食物网的影响

Mixotrophs combine resource use to outcompete specialists: implications for aquatic food webs.

作者信息

Tittel Jörg, Bissinger Vera, Zippel Barbara, Gaedke Ursula, Bell Elanor, Lorke Andreas, Kamjunke Norbert

机构信息

Department of Ecology and Ecosystem Modeling, University of Potsdam, Maulbeerallee 2, D-14469 Potsdam, Germany.

出版信息

Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12776-81. doi: 10.1073/pnas.2130696100. Epub 2003 Oct 20.

Abstract

The majority of organisms can be grouped into those relying solely on photosynthesis (phototrophy) or those relying solely on the assimilation of organic substances (heterotrophy) to meet their requirements for energy and carbon. However, a special life history trait exists in which organisms combine both phototrophy and heterotrophy. Such "mixotrophy" is a widespread phenomenon in aquatic habitats and is observed in many protozoan and metazoan organisms. The strategy requires investment in both photosynthetic and heterotrophic cellular apparatus, and the benefits must outweigh these costs. In accordance with mechanistic resource competition theory, laboratory experiments revealed that pigmented mixotrophs combined light, mineral nutrients, and prey as substitutable resources. Thereby, they reduced prey abundance below the critical food concentration of competing specialist grazers [Rothhaupt, K. O. (1996) Ecology 77, 716-724]. Here, we demonstrate the important consequences of this strategy for an aquatic community. In the illuminated surface strata of a lake, mixotrophs reduced prey abundance steeply. The data suggest that, as a consequence, grazers from higher trophic levels, consuming both the mixotrophs and their prey, could not persist. Thus, the mixotrophs escaped from competition with and losses to higher grazers. Furthermore, the mixotrophs structured prey abundance along the vertical light gradient, creating low densities near the surface and a pronounced maximum of their algal prey at depth. Such deep algal accumulations are typical features of nutrient-poor aquatic habitats, previously explained by resource availability. We hypothesize instead that the mixotrophic grazing strategy is responsible for deep algal accumulations in many aquatic environments.

摘要

大多数生物可分为仅依靠光合作用(光养)的生物或仅依靠有机物质同化作用(异养)来满足其能量和碳需求的生物。然而,存在一种特殊的生活史特征,即生物同时结合了光养和异养。这种“混合营养”在水生生境中是一种普遍现象,在许多原生动物和后生动物中都有观察到。这种策略需要在光合和异养细胞机制上都进行投入,且其带来的益处必须超过这些成本。根据机械资源竞争理论,实验室实验表明,有色素的混合营养生物将光、矿物质营养和猎物作为可替代资源。由此,它们将猎物丰度降低到了竞争性专性食草动物的临界食物浓度以下[罗斯豪普特,K. O.(1996年)《生态学》77卷,第716 - 724页]。在此,我们证明了这种策略对水生群落的重要影响。在湖泊有光照的表层,混合营养生物急剧降低了猎物丰度。数据表明,结果是,来自较高营养级的食草动物,由于既捕食混合营养生物又捕食其猎物,无法持续生存。因此,混合营养生物避免了与较高食草动物的竞争以及被其捕食。此外,混合营养生物沿着垂直光梯度构建猎物丰度,在水面附近形成低密度,而在深处其藻类猎物密度显著最高。这种深层藻类聚集是贫营养水生生境的典型特征,以前是用资源可利用性来解释的。相反,我们假设混合营养的捕食策略是许多水生环境中深层藻类聚集的原因。

相似文献

1
Mixotrophs combine resource use to outcompete specialists: implications for aquatic food webs.
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12776-81. doi: 10.1073/pnas.2130696100. Epub 2003 Oct 20.
3
Mixotrophy in nanoflagellates across environmental gradients in the ocean.
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6211-6220. doi: 10.1073/pnas.1814860116. Epub 2019 Feb 13.
6
Light-dependent niche differentiation in two mixotrophic bacterivores.
Environ Microbiol Rep. 2022 Aug;14(4):530-537. doi: 10.1111/1758-2229.13071. Epub 2022 May 4.
8
Environment-dependent metabolic investments in the mixotrophic chrysophyte Ochromonas.
J Phycol. 2024 Feb;60(1):170-184. doi: 10.1111/jpy.13418. Epub 2023 Dec 23.
9
Mixotrophic organisms become more heterotrophic with rising temperature.
Ecol Lett. 2013 Feb;16(2):225-33. doi: 10.1111/ele.12033. Epub 2012 Nov 23.

引用本文的文献

3
Predicting optimal mixotrophic metabolic strategies in the global ocean.
Sci Adv. 2024 Dec 13;10(50):eadr0664. doi: 10.1126/sciadv.adr0664.
4
Prevalence and Preferred Niche of Small Eukaryotes with Mixotrophic Potentials in the Global Ocean.
Microorganisms. 2024 Apr 8;12(4):750. doi: 10.3390/microorganisms12040750.
6
PioABC-Dependent Fe(II) Oxidation during Photoheterotrophic Growth on an Oxidized Carbon Substrate Increases Growth Yield.
Appl Environ Microbiol. 2022 Aug 9;88(15):e0097422. doi: 10.1128/aem.00974-22. Epub 2022 Jul 18.
7
Light-dependent niche differentiation in two mixotrophic bacterivores.
Environ Microbiol Rep. 2022 Aug;14(4):530-537. doi: 10.1111/1758-2229.13071. Epub 2022 May 4.
9
Ecology of planktonic ciliates in a changing world: Concepts, methods, and challenges.
J Eukaryot Microbiol. 2022 Sep;69(5):e12879. doi: 10.1111/jeu.12879. Epub 2021 Dec 22.
10
Experimental identification and in silico prediction of bacterivory in green algae.
ISME J. 2021 Jul;15(7):1987-2000. doi: 10.1038/s41396-021-00899-w. Epub 2021 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验