Lund Gertrud, Lauria Massimiliano, Guldberg Per, Zaina Silvio
Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, DK-1871 Frederiksberg C, Denmark.
Genetics. 2003 Oct;165(2):835-48. doi: 10.1093/genetics/165.2.835.
This study investigates the prevalence of CG and CNG suppression in single- vs. multicopy DNA regions of the maize genome. The analysis includes the single- and multicopy seed storage proteins (zeins), the miniature inverted-repeat transposable elements (MITEs), and long terminal repeat (LTR) retrotransposons. Zein genes are clustered on specific chromosomal regions, whereas MITEs and LTRs are dispersed in the genome. The multicopy zein genes are CG suppressed and exhibit large variations in CG suppression. The variation observed correlates with the extent of duplication each zein gene has undergone, indicating that gene duplication results in an increased turnover of cytosine residues. Alignment of individual zein genes confirms this observation and demonstrates that CG depletion results primarily from polarized C:T and G:A transition mutations from a less to a more extensively duplicated gene. In addition, transition mutations occur primarily in a CG or CNG context suggesting that CG suppression may result from deamination of methylated cytosine residues. Duplication-dependent CG depletion is likely to occur at other loci as duplicated MITEs and LTR elements, or elements inserted into duplicated gene regions, also exhibit CG depletion.
本研究调查了玉米基因组单拷贝与多拷贝DNA区域中CG和CNG抑制的发生率。分析包括单拷贝和多拷贝种子贮藏蛋白(醇溶蛋白)、微型反向重复转座元件(MITE)和长末端重复(LTR)反转录转座子。醇溶蛋白基因聚集在特定染色体区域,而MITE和LTR则分散在基因组中。多拷贝醇溶蛋白基因受到CG抑制,且在CG抑制方面表现出较大差异。观察到的这种差异与每个醇溶蛋白基因经历的重复程度相关,表明基因重复导致胞嘧啶残基周转率增加。对单个醇溶蛋白基因的比对证实了这一观察结果,并表明CG缺失主要源于从较少重复到较多重复基因的极化C:T和G:A转换突变。此外,转换突变主要发生在CG或CNG环境中,这表明CG抑制可能是由甲基化胞嘧啶残基的脱氨基作用导致的。依赖重复的CG缺失可能发生在其他位点,因为重复的MITE和LTR元件,或插入重复基因区域的元件也表现出CG缺失。