Suppr超能文献

单个分离的脑线粒体中线粒体膜电位的自发变化。

Spontaneous changes in mitochondrial membrane potential in single isolated brain mitochondria.

作者信息

Vergun Olga, Votyakova Tatyana V, Reynolds Ian J

机构信息

Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.

出版信息

Biophys J. 2003 Nov;85(5):3358-66. doi: 10.1016/S0006-3495(03)74755-9.

Abstract

In this study we measured DeltaPsim in single isolated brain mitochondria using rhodamine 123. Mitochondria were attached to coverslips and superfused with K(+)-based HEPES-buffer medium supplemented with malate and glutamate. In approximately 70% of energized mitochondria we observed large amplitude spontaneous fluctuations in DeltaPsim with a time course comparable to that observed previously in mitochondria of intact cells. The other 30% of mitochondria maintained a stable DeltaPsim. Some of the "stable" mitochondria began to fluctuate spontaneously during the recording period. However, none of the initially fluctuating mitochondria became stable. Upon the removal of substrates from the medium or application of small amounts of Ca(2+), rhodamine 123 fluorescence rapidly dropped to background values in fluctuating mitochondria, while nonfluctuating mitochondria depolarized with a delay and often began to fluctuate before complete depolarization. The changes in DeltaPsim were not connected to oxidant production since reducing illumination or the addition of antioxidants had no effect on DeltaPsim. Fluctuating mitochondria did not lose calcein, nor was there any effect of cyclosporin A on DeltaPsim, which ruled out a contribution of permeability transition. We conclude that the fluctuations in DeltaPsim reflect an intermediate, unstable state of mitochondria that may lead to or reflect mitochondrial dysfunction.

摘要

在本研究中,我们使用罗丹明123测量单个分离的脑线粒体中的ΔΨm。线粒体附着在盖玻片上,并用补充有苹果酸和谷氨酸的基于K⁺的HEPES缓冲培养基进行灌流。在大约70%的活跃线粒体中,我们观察到ΔΨm出现大幅度的自发波动,其时间进程与之前在完整细胞线粒体中观察到的相当。另外30%的线粒体保持稳定的ΔΨm。一些“稳定”的线粒体在记录期间开始自发波动。然而,最初波动的线粒体中没有一个变得稳定。从培养基中去除底物或施加少量Ca²⁺后,波动线粒体中的罗丹明123荧光迅速降至背景值,而非波动线粒体则延迟去极化,并且在完全去极化之前常常开始波动。ΔΨm的变化与氧化剂产生无关,因为减少光照或添加抗氧化剂对ΔΨm没有影响。波动的线粒体没有丢失钙黄绿素,环孢素A对ΔΨm也没有任何影响,这排除了通透性转换的作用。我们得出结论,ΔΨm的波动反映了线粒体的一种中间不稳定状态,这种状态可能导致或反映线粒体功能障碍。

相似文献

1
Spontaneous changes in mitochondrial membrane potential in single isolated brain mitochondria.
Biophys J. 2003 Nov;85(5):3358-66. doi: 10.1016/S0006-3495(03)74755-9.
3
5
Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping.
Biophys J. 2005 Mar;88(3):2340-9. doi: 10.1529/biophysj.104.041483. Epub 2005 Jan 14.
8
Quantitative analysis of spontaneous mitochondrial depolarizations.
Biophys J. 2003 Nov;85(5):3350-7. doi: 10.1016/S0006-3495(03)74754-7.

引用本文的文献

3
Lithium isotopes differentially modify mitochondrial amorphous calcium phosphate cluster size distribution and calcium capacity.
Front Physiol. 2023 Sep 15;14:1200119. doi: 10.3389/fphys.2023.1200119. eCollection 2023.
5
Non-conventional mitochondrial permeability transition: Its regulation by mitochondrial dynamics.
Biochim Biophys Acta Bioenerg. 2023 Jan 1;1864(1):148914. doi: 10.1016/j.bbabio.2022.148914. Epub 2022 Sep 3.
7
Mitochondrial Ca Homeostasis: Emerging Roles and Clinical Significance in Cardiac Remodeling.
Int J Mol Sci. 2022 Mar 11;23(6):3025. doi: 10.3390/ijms23063025.
8
Evaluation of mitochondrial dysfunction due to oxidative stress in therapeutic, toxic and lethal concentrations of tramadol.
Toxicol Res (Camb). 2021 Nov 8;10(6):1162-1170. doi: 10.1093/toxres/tfab096. eCollection 2021 Dec.
9
NAD(H) Regulates the Permeability Transition Pore in Mitochondria through an External Site.
Int J Mol Sci. 2021 Aug 9;22(16):8560. doi: 10.3390/ijms22168560.
10
Effects of Matrix pH on Spontaneous Transient Depolarization and Reactive Oxygen Species Production in Mitochondria.
Front Cell Dev Biol. 2021 Jun 30;9:692776. doi: 10.3389/fcell.2021.692776. eCollection 2021.

本文引用的文献

1
Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane.
Science. 2002 Nov 1;298(5595):1029-33. doi: 10.1126/science.1074360.
2
Fluorescence imaging of metabolic responses in single mitochondria.
Biochem Biophys Res Commun. 2002 Jan 11;290(1):23-8. doi: 10.1006/bbrc.2001.6185.
3
A history of UCP1.
Biochem Soc Trans. 2001 Nov;29(Pt 6):751-5. doi: 10.1042/bst0290751.
4
Spontaneous changes in mitochondrial membrane potential in cultured neurons.
J Neurosci. 2001 Jul 15;21(14):5054-65. doi: 10.1523/JNEUROSCI.21-14-05054.2001.
5
Electrical coupling and plasticity of the mitochondrial network.
Cell Calcium. 2000 Nov-Dec;28(5-6):365-70. doi: 10.1054/ceca.2000.0177.
7
ATP-Sensitive potassium channels: a review of their cardioprotective pharmacology.
J Mol Cell Cardiol. 2000 Apr;32(4):677-95. doi: 10.1006/jmcc.2000.1111.
8
Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts.
Trends Neurosci. 2000 Apr;23(4):166-74. doi: 10.1016/s0166-2236(99)01534-9.
9
Dual responses of CNS mitochondria to elevated calcium.
J Neurosci. 2000 Jan 1;20(1):103-13. doi: 10.1523/JNEUROSCI.20-01-00103.2000.
10
Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic B-cells.
Biochem Biophys Res Commun. 2000 Jan 7;267(1):179-83. doi: 10.1006/bbrc.1999.1921.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验