Suppr超能文献

一种用于开发医学信息检索代理的多智能体架构。

A multiagent architecture for developing medical information retrieval agents.

作者信息

Walczak Steven

机构信息

Health Administration and Information Systems Programs, The Business School, University of Colorado at Denver, Campus Box 165, PO Box 173364, Denver, Colorado 80217-3364, USA.

出版信息

J Med Syst. 2003 Oct;27(5):479-98. doi: 10.1023/a:1025668124244.

Abstract

Information that is available on the world wide web (WWW) is already more vast than can be comprehensibly studied by individuals and this quantity is increasing at a staggering pace. The quality of service delivered by physicians is dependent on the availability of current information. The agent paradigm offers a means for enabling physicians to filter information and retrieve only information that is relevant to current patient treatments. As with many specialized domains, agent-based information retrieval in medical domains must satisfy several domain-dependent constraints. A multiple agent architecture is developed and described in detail to efficiently provide agent-based information retrieval from the WWW and other explicit information resources. A simulation of the proposed multiple agent architecture shows a 97% decrease in information overload and an 85% increase in information relevancy over existing meta-search tools (with even larger gains over standard search engines).

摘要

万维网上可用的信息已经多得个人无法全面研究,而且这个数量还在以惊人的速度增长。医生提供的服务质量取决于当前信息的可用性。智能体范式提供了一种方法,使医生能够筛选信息,只检索与当前患者治疗相关的信息。与许多专业领域一样,医学领域基于智能体的信息检索必须满足几个依赖于领域的约束条件。本文详细开发并描述了一种多智能体架构,以有效地从万维网和其他明确的信息资源中提供基于智能体的信息检索。对所提出的多智能体架构的模拟显示,与现有的元搜索工具相比,信息过载减少了97%,信息相关性提高了85%(与标准搜索引擎相比,收益甚至更大)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验