Suppr超能文献

基于语义网技术的生物医学搜索引擎的统一架构。

A unified architecture for biomedical search engines based on semantic web technologies.

机构信息

Advance Artificial Intelligence Laboratory, Computer Engineering and IT Department, Amirkabir University of Technology, Tehran, Iran.

出版信息

J Med Syst. 2011 Apr;35(2):237-49. doi: 10.1007/s10916-009-9360-z. Epub 2009 Aug 25.

Abstract

There is a huge growth in the volume of published biomedical research in recent years. Many medical search engines are designed and developed to address the over growing information needs of biomedical experts and curators. Significant progress has been made in utilizing the knowledge embedded in medical ontologies and controlled vocabularies to assist these engines. However, the lack of common architecture for utilized ontologies and overall retrieval process, hampers evaluating different search engines and interoperability between them under unified conditions. In this paper, a unified architecture for medical search engines is introduced. Proposed model contains standard schemas declared in semantic web languages for ontologies and documents used by search engines. Unified models for annotation and retrieval processes are other parts of introduced architecture. A sample search engine is also designed and implemented based on the proposed architecture in this paper. The search engine is evaluated using two test collections and results are reported in terms of precision vs. recall and mean average precision for different approaches used by this search engine.

摘要

近年来,发表的生物医学研究文献数量呈爆炸式增长。许多医学搜索引擎被设计和开发,以满足生物医学专家和策展人的日益增长的信息需求。在利用医学本体和受控词汇表中嵌入的知识来辅助这些引擎方面已经取得了重大进展。然而,由于缺乏通用的架构来利用本体和整体检索过程,阻碍了在统一条件下评估不同的搜索引擎和它们之间的互操作性。在本文中,引入了一种用于医学搜索引擎的统一架构。所提出的模型包含了语义 Web 语言中为搜索引擎使用的本体和文档声明的标准模式。注释和检索过程的统一模型是所介绍架构的其他部分。本文还根据所提出的架构设计和实现了一个示例搜索引擎。使用两个测试集对搜索引擎进行了评估,并报告了不同方法的精确率与召回率以及平均准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验