Wang Shuang, Zhao Hongyu
Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.
Am J Epidemiol. 2003 Nov 1;158(9):899-914. doi: 10.1093/aje/kwg233.
It is likely that many complex diseases result from interactions among several genes, as well as environmental factors. The presence of such interactions poses challenges to investigators in identifying susceptibility genes, understanding biologic pathways, and predicting and controlling disease risks. Recently, Gauderman (Am J Epidemiol 2002;155:478-84) reported results from the first systematic analysis of the statistical power needed to detect gene-gene interactions in association studies. However, Gauderman used different statistical models to model disease risks for different study designs, and he assumed a very low disease prevalence to make different models more comparable. In this article, assuming a logistic model for disease risk for different study designs, the authors investigate the power of population-based and family-based association designs to detect gene-gene interactions for common diseases. The results indicate that population-based designs are more powerful than family-based designs for detecting gene-gene interactions when disease prevalence in the study population is moderate.
许多复杂疾病可能是由多个基因以及环境因素之间的相互作用导致的。这种相互作用的存在给研究人员在识别易感基因、理解生物学途径以及预测和控制疾病风险方面带来了挑战。最近,高德曼(《美国流行病学杂志》2002年;155:478 - 84)报告了对关联研究中检测基因 - 基因相互作用所需统计功效进行首次系统分析的结果。然而,高德曼针对不同的研究设计使用了不同的统计模型来模拟疾病风险,并且他假设疾病患病率非常低以使不同模型更具可比性。在本文中,针对不同的研究设计假设疾病风险采用逻辑模型,作者研究了基于人群和基于家系的关联设计检测常见疾病基因 - 基因相互作用的功效。结果表明,当研究人群中的疾病患病率适中时,基于人群的设计在检测基因 - 基因相互作用方面比基于家系的设计更有效。