Suppr超能文献

巨蛋白肌联蛋白中依赖钙的分子弹簧元件。

Calcium-dependent molecular spring elements in the giant protein titin.

作者信息

Labeit Dietmar, Watanabe Kaori, Witt Christian, Fujita Hideaki, Wu Yiming, Lahmers Sunshine, Funck Theodor, Labeit Siegfried, Granzier Henk

机构信息

Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Mannheim, 68167 Mannheim, Germany.

出版信息

Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13716-21. doi: 10.1073/pnas.2235652100. Epub 2003 Oct 30.

Abstract

Titin (also known as connectin) is a giant protein with a wide range of cellular functions, including providing muscle cells with elasticity. Its physiological extension is largely derived from the PEVK segment, rich in proline (P), glutamate (E), valine (V), and lysine (K) residues. We studied recombinant PEVK molecules containing the two conserved elements: approximately 28-residue PEVK repeats and E-rich motifs. Single molecule experiments revealed that calcium-induced conformational changes reduce the bending rigidity of the PEVK fragments, and site-directed mutagenesis identified four glutamate residues in the E-rich motif that was studied (exon 129), as critical for this process. Experiments with muscle fibers showed that titin-based tension is calcium responsive. We propose that the PEVK segment contains E-rich motifs that render titin a calcium-dependent molecular spring that adapts to the physiological state of the cell.

摘要

肌联蛋白(也称为连接蛋白)是一种具有广泛细胞功能的巨型蛋白质,包括赋予肌肉细胞弹性。其生理伸展主要源自富含脯氨酸(P)、谷氨酸(E)、缬氨酸(V)和赖氨酸(K)残基的PEVK区段。我们研究了包含两个保守元件的重组PEVK分子:约28个残基的PEVK重复序列和富含E的基序。单分子实验表明,钙诱导的构象变化降低了PEVK片段的弯曲刚性,定点诱变确定了所研究的富含E的基序(第129外显子)中的四个谷氨酸残基对此过程至关重要。对肌纤维的实验表明,基于肌联蛋白的张力对钙有反应。我们提出,PEVK区段包含富含E的基序,使肌联蛋白成为适应细胞生理状态的钙依赖性分子弹簧。

相似文献

1
Calcium-dependent molecular spring elements in the giant protein titin.
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13716-21. doi: 10.1073/pnas.2235652100. Epub 2003 Oct 30.
2
Modular motif, structural folds and affinity profiles of the PEVK segment of human fetal skeletal muscle titin.
J Biol Chem. 2001 Mar 9;276(10):7442-9. doi: 10.1074/jbc.M008851200. Epub 2000 Nov 17.
3
PKC phosphorylation of titin's PEVK element: a novel and conserved pathway for modulating myocardial stiffness.
Circ Res. 2009 Sep 25;105(7):631-8, 17 p following 638. doi: 10.1161/CIRCRESAHA.109.198465. Epub 2009 Aug 13.
5
Towards a molecular understanding of the elasticity of titin.
J Mol Biol. 1996 Aug 9;261(1):62-71. doi: 10.1006/jmbi.1996.0441.
7
The elasticity of individual titin PEVK exons measured by single molecule atomic force microscopy.
J Biol Chem. 2005 Feb 25;280(8):6261-4. doi: 10.1074/jbc.C400573200. Epub 2005 Jan 4.
10
Titin PEVK segment: charge-driven elasticity of the open and flexible polyampholyte.
J Muscle Res Cell Motil. 2005;26(6-8):291-301. doi: 10.1007/s10974-005-9035-4.

引用本文的文献

1
Titin's Intrinsically Disordered PEVK Domain Modulates Actin Polymerization.
Int J Mol Sci. 2025 Jul 21;26(14):7004. doi: 10.3390/ijms26147004.
2
Consecutive SSCs increase the SSC effect in skinned rat muscle fibres.
Pflugers Arch. 2025 Jun;477(6):873-888. doi: 10.1007/s00424-025-03088-2. Epub 2025 May 8.
3
Mutation in and a Variant Linked to a Severe Sporadic Infant Dilated Cardiomyopathy Case.
Case Rep Genet. 2024 Dec 28;2024:9517735. doi: 10.1155/crig/9517735. eCollection 2024.
4
The calcium-binding protein S100A1 binds to titin's N2A insertion sequence in a pH-dependent manner.
J Gen Physiol. 2025 Jan 6;157(1). doi: 10.1085/jgp.202313472. Epub 2024 Dec 31.
5
An integrated picture of the structural pathways controlling the heart performance.
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2410893121. doi: 10.1073/pnas.2410893121. Epub 2024 Dec 4.
6
Calcium has a direct effect on thick filament activation in porcine myocardium.
J Gen Physiol. 2024 Nov 4;156(11). doi: 10.1085/jgp.202413545. Epub 2024 Sep 20.
7
Impaired Intracellular Calcium Buffering Contributes to the Arrhythmogenic Substrate in Atrial Myocytes From Patients With Atrial Fibrillation.
Circulation. 2024 Aug 13;150(7):544-559. doi: 10.1161/CIRCULATIONAHA.123.066577. Epub 2024 Jun 24.
9
Mild to moderate damage in knee extensor muscles accumulates after two bouts of maximal eccentric contractions.
Eur J Appl Physiol. 2023 Dec;123(12):2723-2732. doi: 10.1007/s00421-023-05257-6. Epub 2023 Jun 23.
10
Muscle-tendon unit design and tuning for power enhancement, power attenuation, and reduction of metabolic cost.
J Biomech. 2023 May;153:111585. doi: 10.1016/j.jbiomech.2023.111585. Epub 2023 Apr 13.

本文引用的文献

2
Reverse engineering of the giant muscle protein titin.
Nature. 2002 Aug 29;418(6901):998-1002. doi: 10.1038/nature00938.
4
Cardiac titin: an adjustable multi-functional spring.
J Physiol. 2002 Jun 1;541(Pt 2):335-42. doi: 10.1113/jphysiol.2001.014381.
5
A non-cross-bridge stiffness in activated frog muscle fibers.
Biophys J. 2002 Jun;82(6):3118-27. doi: 10.1016/S0006-3495(02)75653-1.
6
Force enhancement following stretching of skeletal muscle: a new mechanism.
J Exp Biol. 2002 May;205(Pt 9):1275-83. doi: 10.1242/jeb.205.9.1275.
7
Role of titin in vertebrate striated muscle.
Philos Trans R Soc Lond B Biol Sci. 2002 Feb 28;357(1418):199-206. doi: 10.1098/rstb.2001.1028.
8
History-dependent mechanical properties of permeabilized rat soleus muscle fibers.
Biophys J. 2002 Feb;82(2):929-43. doi: 10.1016/S0006-3495(02)75454-4.
9
Molecular mechanics of cardiac titin's PEVK and N2B spring elements.
J Biol Chem. 2002 Mar 29;277(13):11549-58. doi: 10.1074/jbc.M200356200. Epub 2002 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验