Morotti Ilaria, Caremani Marco, Marcello Matteo, Pertici Irene, Squarci Caterina, Bianco Pasquale, Narayanan Theyencheri, Piazzesi Gabriella, Reconditi Massimo, Lombardi Vincenzo, Linari Marco
PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy.
Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy.
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2410893121. doi: 10.1073/pnas.2410893121. Epub 2024 Dec 4.
The regulation of heart function is attributed to a dual filament mechanism: i) the Ca-dependent structural changes in the regulatory proteins of the thin, actin-containing filament making actin available for myosin motor attachment, and ii) the release of motors from their folded (OFF) state on the surface of the thick filament allowing them to attach and pull the actin filament. Thick filament mechanosensing is thought to control the number of motors switching ON in relation to the systolic performance, but its molecular basis is still controversial. Here, we use high spatial resolution X-ray diffraction data from electrically paced rat trabeculae and papillary muscles to provide a molecular explanation of the modulation of heart performance that calls for a revision of the mechanosensing hypothesis. We find that upon stimulation, titin-mediated structural changes in the thick filament switch motors ON throughout the filament within ~½ the maximum systolic force. These structural changes also drive Myosin Binding Protein-C (MyBP-C) to promote first motor attachments to actin from the central 1/3 of the half-thick filament. Progression of attachments toward the periphery of half-thick filament with increase in systolic force is carried on by near-neighbor cooperative thin filament activation by attached motors. The identification of the roles of MyBP-C, titin, thin and thick filaments in heart regulation enables their targeting for potential therapeutic interventions.
i)含肌动蛋白的细肌丝调节蛋白中依赖钙的结构变化,使肌动蛋白可用于肌球蛋白运动附着;ii)粗肌丝表面的运动蛋白从折叠(关闭)状态释放,使其能够附着并拉动肌动蛋白丝。粗肌丝机械传感被认为控制着与收缩性能相关的开启运动蛋白的数量,但其分子基础仍存在争议。在这里,我们使用来自电刺激大鼠小梁和乳头肌的高空间分辨率X射线衍射数据,对心脏性能调节进行分子解释,这需要对机械传感假说进行修正。我们发现,在刺激时,肌联蛋白介导的粗肌丝结构变化在最大收缩力的约1/2范围内使整个肌丝上的运动蛋白开启。这些结构变化还驱动肌球蛋白结合蛋白C(MyBP-C)促进第一个运动蛋白从半粗肌丝的中央1/3附着到肌动蛋白上。随着收缩力的增加,附着的运动蛋白通过近邻协同细肌丝激活,使附着向半粗肌丝的周边推进。确定MyBP-C、肌联蛋白、细肌丝和粗肌丝在心脏调节中的作用,有助于将它们作为潜在治疗干预的靶点。