Vandemeulebroucke An, Versées Wim, De Vos Stefan, Van Holsbeke Els, Steyaert Jan
Department of Ultrastructure, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
Biochemistry. 2003 Nov 11;42(44):12902-8. doi: 10.1021/bi0347914.
The nucleoside hydrolase (NH) of the Trypanosoma vivax parasite catalyzes the hydrolysis of the N-glycosidic bond in ribonucleosides according to the following reaction: beta-purine (or pyrimidine) nucleoside + H(2)O --> purine (pyrimidine) base + ribose. The reaction follows a highly dissociative nucleophilic displacement reaction mechanism with a ribosyl oxocarbenium-like transition state. This paper describes the first pre-steady-state analysis of the conversion of a number of purine nucleosides. The NH exhibits burst kinetics and behaves with half-of-the-sites reactivity. The analysis suggests that the NH of T. vivax follows a complex multistep mechanism in which a common slow step different from the chemical hydrolysis is rate limiting. Stopped-flow fluorescence binding experiments with ribose indicate that a tightly bound enzyme-ribose complex accumulates during the enzymatic hydrolysis of the common purine nucleosides. This is caused by a slow isomerization between a tight and a loose enzyme-ribose complex forming the rate-limiting step on the reaction coordinate.
活泼锥虫的核苷水解酶(NH)根据以下反应催化核糖核苷中N-糖苷键的水解:β-嘌呤(或嘧啶)核苷 + H₂O → 嘌呤(嘧啶)碱 + 核糖。该反应遵循高度解离的亲核取代反应机制,具有核糖基氧碳鎓样过渡态。本文描述了对多种嘌呤核苷转化的首次预稳态分析。NH表现出爆发动力学,并具有半位点反应性。分析表明,活泼锥虫的NH遵循复杂的多步机制,其中不同于化学水解的常见慢步骤是限速步骤。用核糖进行的停流荧光结合实验表明,在常见嘌呤核苷的酶促水解过程中会积累紧密结合的酶-核糖复合物。这是由紧密和松散的酶-核糖复合物之间缓慢的异构化引起的,形成了反应坐标上的限速步骤。