Versées Wim, Loverix Stefan, Vandemeulebroucke An, Geerlings Paul, Steyaert Jan
Laboratorium voor Ultrastructuur, Instituut voor Moleculaire Biologie, Vrije Universiteit Brussel and Vlaams Interuniversitair instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium.
J Mol Biol. 2004 Apr 16;338(1):1-6. doi: 10.1016/j.jmb.2004.02.049.
General acid catalysis is a powerful and widely used strategy in enzymatic nucleophilic displacement reactions. For example, hydrolysis/phosphorolysis of the N-glycosidic bond in nucleosides and nucleotides commonly involves the protonation of the leaving nucleobase concomitant with nucleophilic attack. However, in the nucleoside hydrolase of the parasite Trypanosoma vivax, crystallographic and mutagenesis studies failed to identify a general acid. This enzyme binds the purine base of the substrate between the aromatic side-chains of Trp83 and Trp260. Here, we show via quantum chemical calculations that face-to-face stacking can raise the pKa of a heterocyclic aromatic compound by several units. Site-directed mutagenesis combined with substrate engineering demonstrates that Trp260 catalyzes the cleavage of the glycosidic bond by promoting the protonation of the purine base at N-7, hence functioning as an alternative to general acid catalysis.
一般酸催化是酶促亲核取代反应中一种强大且广泛应用的策略。例如,核苷和核苷酸中N-糖苷键的水解/磷酸解通常涉及离去核碱基的质子化以及亲核攻击。然而,在寄生虫活泼锥虫的核苷水解酶中,晶体学和诱变研究未能鉴定出一般酸。该酶将底物的嘌呤碱基结合在Trp83和Trp260的芳香族侧链之间。在此,我们通过量子化学计算表明,面对面堆积可使杂环芳香化合物的pKa提高几个单位。定点诱变与底物工程相结合表明,Trp260通过促进嘌呤碱基在N-7处的质子化来催化糖苷键的裂解,因此作为一般酸催化的替代发挥作用。