Suppr超能文献

G蛋白信号调节(RGS)蛋白的生理作用。

Physiological actions of regulators of G-protein signaling (RGS) proteins.

作者信息

Ishii Masaru, Kurachi Yoshihisa

机构信息

Department of Pharmacology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Osaka, Japan.

出版信息

Life Sci. 2003 Dec 5;74(2-3):163-71. doi: 10.1016/j.lfs.2003.09.004.

Abstract

Regulators of G-protein signaling (RGS) proteins are a family of proteins, which accelerate GTPase-activity intrinsic to the alpha subunits of heterotrimeric G-proteins and play crucial roles in the physiological control of G-protein signaling. If RGS proteins were active unrestrictedly, they would completely suppress various G-protein-mediated cell signaling as has been shown in the over-expression experiments of various RGS proteins. Thus, physiologically the modes of RGS-action should be under some regulation. The regulation can be achieved through the control of either the protein function and/or the subcellular localization. Examples for the former are as follows: (i) Phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) inhibits RGS-action, which can be recovered by Ca(2+)/calmodulin. This underlies a voltage-dependent "relaxation" behavior of G-protein-gated K(+) channels. (ii) A modulatory protein, 14-3-3, binds to the RGS proteins phosphorylated by PKA and inhibits their actions. For the latter mechanism, additional regulatory modules, such as PDZ, PX, and G-protein gamma subunit-like (GGL) domains, identified in several RGS proteins may be responsible: (i) PDZ domain of RGS12 interacts with a G-protein-coupled chemokine receptor, CXCR2, and thus facilitates its GAP action on CXCR2-mediated G-protein signals. (ii) RGS9 forms a complex with a type of G-protein beta-subunit (Gbeta5) via its GGL domain, which facilitates the GAP function of RGS9. Both types of regulations synergistically control the mode of action of RGS proteins in the physiological conditions, which contributes to fine tunings of G-protein signalings.

摘要

G蛋白信号调节蛋白(RGS)是一类蛋白质,可加速异源三聚体G蛋白α亚基固有的GTP酶活性,并在G蛋白信号的生理控制中发挥关键作用。如果RGS蛋白不受限制地激活,它们将完全抑制各种G蛋白介导的细胞信号传导,正如各种RGS蛋白的过表达实验所显示的那样。因此,在生理条件下,RGS的作用模式应该受到某种调节。这种调节可以通过控制蛋白质功能和/或亚细胞定位来实现。前者的例子如下:(i)磷脂酰肌醇3,4,5-三磷酸(PIP(3))抑制RGS的作用,而Ca(2+)/钙调蛋白可使其恢复。这是G蛋白门控K(+)通道电压依赖性“松弛”行为的基础。(ii)一种调节蛋白14-3-3与被PKA磷酸化的RGS蛋白结合并抑制其作用。对于后一种机制,在几种RGS蛋白中发现的额外调节模块,如PDZ、PX和G蛋白γ亚基样(GGL)结构域可能起作用:(i)RGS12的PDZ结构域与G蛋白偶联趋化因子受体CXCR2相互作用,从而促进其对CXCR2介导的G蛋白信号的GAP作用。(ii)RGS9通过其GGL结构域与一种G蛋白β亚基(Gbeta5)形成复合物,这促进了RGS9的GAP功能。在生理条件下,这两种调节方式协同控制RGS蛋白的作用模式,有助于对G蛋白信号进行精细调节。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验