Ellepola A N B, Hurst S F, Elie C M, Morrison C J
Mycotic Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
Oral Microbiol Immunol. 2003 Dec;18(6):379-88. doi: 10.1046/j.0902-0055.2003.00103.x.
Candida dubliniensis is a recently described opportunistic pathogen which shares many phenotypic characteristics with Candida albicans but which has been reported to rapidly acquire resistance to azole antifungal drugs. Therefore, differentiation of C. dubliniensis from C. albicans becomes important to better understand the clinical significance and epidemiologic role of C. dubliniensis in candidiasis. We compared phenotypic methods for the differentiation of C. dubliniensis from C. albicans (i.e. the ability to grow at elevated temperatures, colony color on CHROMagar Candida medium, and carbohydrate assimilation patterns) to amplify the results of a polymerase chain reaction (PCR) assay using universal fungal primers to the internal transcribed spacer 2 (ITS2) region of rDNA and species-specific DNA probes in an enzyme immunoassay format (PCR-EIA). DNA sequencing of the ITS1 rDNA region was also conducted. The C. dubliniensis ITS2 probe correctly identified all C. dubliniensis isolates without cross-reaction with any other Candida species tested (mean A(650 nm) +/- SE, C. dubliniensis probe with C. dubliniensis DNA, 0.372 +/- 0.01, n = 22; C. dubliniensis probe with other Candida species DNA, 0.001 +/- 0.02 n = 16, P < 0.001). All other Candida species tested (C. albicans, Candida glabrata, Candida krusei, Candida parapsilosis, and Candida tropicalis) were also correctly identified by the PCR-EIA without any detectable cross-reactions among species. Phenotypically, C. dubliniensis isolates demonstrated an increased sensitivity to heat compared to C. albicans isolates. At 42 degrees C, only 50% of C. dubliniensis isolates grew compared to 73% of C. albicans isolates and, at 45 degrees C, 91% of C. dubliniensis isolates failed to grow compared to 64% of C. albicans isolates. C. albicans was more likely to demonstrate a dark green or blue green colony color on CHROMagar Candida medium obtained from Becton Dickinson (i.e. 100% of C. albicans isolates were dark green or blue green versus 64% of C. dubliniensis isolates) whereas no difference in the percentage of C. albicans or C. dubliniensis isolates producing dark green or blue green colony color was detected using CHROMagar Candida medium from Hardy Diagnostics (82% for both species). The API 20C AUX carbohydrate assimilation system incorrectly identified C. dubliniensis as C. albicans in all but three cases: remaining isolates were misidentified as C. albicans/C. tropicalis, C. tropicalis/C. albicans, and Candida lusitaniae/C. albicans. In all, 82% of C. albicans isolates and 100% of C. dubliniensis isolates assimilated trehalose; the latter finding was opposite to that reported for C. dubliniensis in the API 20C AUX profile index. Xylose and alpha-methyl-D-glucoside assimilation, respectively, were negative for 100 and 95% of C. dubliniensis isolates and positive for 100 and 91% of C. albicans isolates, confirming earlier reports that assimilation results for xylose and alpha-methyl-D-glucoside may be helpful in the discrimination of these two species. However, conventional phenotypic species identification tests required days for completion, whereas the PCR-EIA could be completed in a matter of hours. In addition, identification of Candida species by ITS1 rDNA sequencing gave 100% correspondence to the results obtained by the PCR-EIA, confirming the specificity of the PCR-EIA method. These data indicate that although a combination of phenotypic methods may help differentiate C. dubliniensis from C. albicans to some extent, the PCR-EIA can provide a simple, rapid, and unequivocal identification of the most medically important Candida species in a single test.
都柏林念珠菌是一种最近才被描述的机会致病菌,它与白色念珠菌有许多表型特征相同,但据报道它能迅速获得对唑类抗真菌药物的耐药性。因此,区分都柏林念珠菌和白色念珠菌对于更好地理解都柏林念珠菌在念珠菌病中的临床意义和流行病学作用变得很重要。我们比较了用于区分都柏林念珠菌和白色念珠菌的表型方法(即在高温下生长的能力、在科玛嘉念珠菌培养基上的菌落颜色以及碳水化合物同化模式),以放大使用通用真菌引物对核糖体DNA的内转录间隔区2(ITS2)区域进行聚合酶链反应(PCR)分析的结果,并在酶免疫分析形式(PCR-EIA)中使用种特异性DNA探针。还对ITS1核糖体DNA区域进行了DNA测序。都柏林念珠菌ITS2探针正确鉴定了所有都柏林念珠菌分离株,与所测试的任何其他念珠菌属均无交叉反应(平均A(650 nm) +/- SE,都柏林念珠菌探针与都柏林念珠菌DNA,0.372 +/- 0.01,n = 22;都柏林念珠菌探针与其他念珠菌属DNA,0.001 +/- 0.02,n = 16,P < 0.001)。所测试的所有其他念珠菌属(白色念珠菌、光滑念珠菌、克柔念珠菌、近平滑念珠菌和热带念珠菌)也通过PCR-EIA正确鉴定,且种间未检测到任何可察觉的交叉反应。在表型上,与白色念珠菌分离株相比,都柏林念珠菌分离株对热的敏感性增加。在42℃时,只有50%的都柏林念珠菌分离株生长,而白色念珠菌分离株为73%;在45℃时,91%的都柏林念珠菌分离株未能生长,而白色念珠菌分离株为64%。从贝克顿·迪金森公司获得的科玛嘉念珠菌培养基上,白色念珠菌更有可能呈现深绿色或蓝绿色菌落颜色(即100%的白色念珠菌分离株为深绿色或蓝绿色,而都柏林念珠菌分离株为64%),而使用哈迪诊断公司的科玛嘉念珠菌培养基时,未检测到白色念珠菌或都柏林念珠菌分离株产生深绿色或蓝绿色菌落颜色的百分比有差异(两种菌均为82%)。API 20C AUX碳水化合物同化系统除了三例之外,在所有情况下都将都柏林念珠菌错误鉴定为白色念珠菌:其余分离株被错误鉴定为白色念珠菌/热带念珠菌、热带念珠菌/白色念珠菌以及葡萄牙念珠菌/白色念珠菌。总体而言,82%的白色念珠菌分离株和100%的都柏林念珠菌分离株同化海藻糖;后一结果与API 20C AUX谱指数中报道的都柏林念珠菌情况相反。木糖和α-甲基-D-葡萄糖苷的同化,都柏林念珠菌分离株分别有100%和95%为阴性,白色念珠菌分离株分别有100%和91%为阳性,这证实了早期的报道,即木糖和α-甲基-D-葡萄糖苷的同化结果可能有助于区分这两个菌种。然而,传统的表型菌种鉴定试验需要数天才能完成,而PCR-EIA只需数小时就能完成。此外,通过ITS1核糖体DNA测序鉴定念珠菌属与PCR-EIA获得的结果100%相符,证实了PCR-EIA方法的特异性。这些数据表明,尽管多种表型方法的组合可能在一定程度上有助于区分都柏林念珠菌和白色念珠菌,但PCR-EIA可以在一次试验中对最具医学重要性的念珠菌属进行简单、快速且明确的鉴定。