Suppr超能文献

一种具有分支门的功能局部化神经网络。

A functions localized neural network with branch gates.

作者信息

Xiong Qingyu, Hirasawa Kotaro, Hu Jinglu, Murata Junichi

机构信息

Automation College, Chongqing University, Chongqing, People's Republic of China.

出版信息

Neural Netw. 2003 Dec;16(10):1461-81. doi: 10.1016/S0893-6080(03)00211-9.

Abstract

In this paper, a functions localized network with branch gates (FLN-bg) is studied, which consists of a basic network and a branch gate network. The branch gate network is used to determine which intermediate nodes of the basic network should be connected to the output node with a gate coefficient ranging from 0 to 1. This determination will adjust the outputs of the intermediate nodes of the basic network depending on the values of the inputs of the network in order to realize a functions localized network. FLN-bg is applied to function approximation problems and a two-spiral problem. The simulation results show that FLN-bg exhibits better performance than conventional neural networks with comparable complexity.

摘要

本文研究了一种带分支门的函数局部化网络(FLN-bg),它由一个基本网络和一个分支门网络组成。分支门网络用于确定基本网络的哪些中间节点应以0到1的门系数连接到输出节点。这种确定将根据网络输入的值来调整基本网络中间节点的输出,以实现函数局部化网络。FLN-bg应用于函数逼近问题和双螺旋问题。仿真结果表明,在复杂度相当的情况下,FLN-bg比传统神经网络表现出更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验