Suppr超能文献

相互作用:细胞外基质与发育中的软骨细胞之间的关系。

A bit of give and take: the relationship between the extracellular matrix and the developing chondrocyte.

作者信息

Behonick Danielle J, Werb Zena

机构信息

Department of Anatomy and Program in Biomedical Sciences, University of California, Box 0452, HSW 1321, 513 Parnassus Avenue, San Francisco, CA 94143-0452, USA.

出版信息

Mech Dev. 2003 Nov;120(11):1327-36. doi: 10.1016/j.mod.2003.05.002.

Abstract

The extracellular matrix (ECM), once thought to be a static structural component of tissues, is now known to play a complex and dynamic role in a variety of cellular functions in a number of diverse tissues. A significant body of literature attests to the ability of the ECM to communicate both spatial and temporal information to adherent cells, thereby directing cell behavior via interactions between the ECM and cell-surface receptors. Moreover, volumes of experimental data show that a great deal of communication travels in the opposite direction, from the cell to the ECM, allowing for regulation of the cues transmitted by the ECM. As such, the ECM, with respect to its components and their organization, is not a fixed reflection of the state the local microenvironment in which a cell finds itself at a particular time, but rather is able to respond to and effect changes in its local microenvironment. As an example of the developmental consequences of ECM interactions, this review gives an overview of the 'give and take' relationship between the ECM and the cells of the developing skeletal elements, in particular, the chondrocyte.

摘要

细胞外基质(ECM),曾被认为是组织的静态结构成分,现在已知其在多种不同组织的多种细胞功能中发挥着复杂而动态的作用。大量文献证明,ECM能够向贴壁细胞传递空间和时间信息,从而通过ECM与细胞表面受体之间的相互作用来指导细胞行为。此外,大量实验数据表明,大量信息是沿相反方向传递的,即从细胞到ECM,从而实现对ECM传递的信号的调控。因此,就其组成成分及其组织而言,ECM并非细胞在特定时间所处局部微环境状态的固定反映,而是能够对其局部微环境做出反应并影响其变化。作为ECM相互作用发育后果的一个例子,本综述概述了ECM与发育中的骨骼元件细胞,特别是软骨细胞之间的“相互作用”关系。

相似文献

3
The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro.
Exp Cell Res. 2013 Jun 10;319(10):1553-61. doi: 10.1016/j.yexcr.2013.03.016. Epub 2013 Apr 12.
6
Matrilin-3 switches from anti- to pro-anabolic upon integration to the extracellular matrix.
Matrix Biol. 2012 Jun;31(5):290-8. doi: 10.1016/j.matbio.2012.03.004. Epub 2012 Apr 10.
7
Regulation of chondrocyte gene expression.
Front Biosci. 1999 Oct 15;4:D743-61. doi: 10.2741/hering.
10
Altered endochondral bone development in matrix metalloproteinase 13-deficient mice.
Development. 2004 Dec;131(23):5883-95. doi: 10.1242/dev.01461.

引用本文的文献

4
Comparative genomics provides insights into the aquatic adaptations of mammals.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2106080118.
6
The application of three-dimensional cell culture in clinical medicine.
Biotechnol Lett. 2020 Nov;42(11):2071-2082. doi: 10.1007/s10529-020-03003-y. Epub 2020 Sep 15.
7
Ontogeny informs regeneration: explant models to investigate the role of the extracellular matrix in cartilage tissue assembly and development.
Connect Tissue Res. 2020 May-Jul;61(3-4):278-291. doi: 10.1080/03008207.2019.1698556. Epub 2020 Mar 18.
9
One size does not fit all: developing a cell-specific niche for in vitro study of cell behavior.
Matrix Biol. 2016 May-Jul;52-54:426-441. doi: 10.1016/j.matbio.2016.01.004. Epub 2016 Jan 15.
10
Bridging the Gap: From 2D Cell Culture to 3D Microengineered Extracellular Matrices.
Adv Healthc Mater. 2015 Dec 30;4(18):2780-96. doi: 10.1002/adhm.201500427. Epub 2015 Nov 23.

本文引用的文献

1
How proteases regulate bone morphogenesis.
Ann N Y Acad Sci. 2003 May;995:109-16. doi: 10.1111/j.1749-6632.2003.tb03214.x.
2
Distinct transglutaminase 2-independent and transglutaminase 2-dependent pathways mediate articular chondrocyte hypertrophy.
J Biol Chem. 2003 May 23;278(21):18824-32. doi: 10.1074/jbc.M301055200. Epub 2003 Feb 26.
3
In vitro differentiation of embryonic stem cells into mineralized osteoblasts.
Differentiation. 2003 Jan;71(1):18-27. doi: 10.1046/j.1432-0436.2003.700602.x.
4
The dynamic interaction of the extracellular matrix in cardiac remodeling.
J Card Fail. 2002 Dec;8(6 Suppl):S314-8. doi: 10.1054/jcaf.2002.129258.
6
In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome.
J Med Genet. 2003 Jan;40(1):34-6. doi: 10.1136/jmg.40.1.34.
7
Fibrillin-1 and fibrillin-2 in human embryonic and early fetal development.
Matrix Biol. 2002 Dec;21(8):637-46. doi: 10.1016/s0945-053x(02)00100-2.
8
Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix.
Microsc Res Tech. 2003 Jan 1;60(1):107-14. doi: 10.1002/jemt.10249.
9
Extracellular matrix in vascular morphogenesis and disease: structure versus signal.
Trends Cell Biol. 2003 Jan;13(1):51-6. doi: 10.1016/s0962-8924(02)00007-7.
10
Regulatory mechanisms of osteoblast and osteoclast differentiation.
Oral Dis. 2002 May;8(3):147-59. doi: 10.1034/j.1601-0825.2002.01829.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验