Suppr超能文献

从ATP适配体进化出具有新特异性和新二级结构的适配体。

Evolution of aptamers with a new specificity and new secondary structures from an ATP aptamer.

作者信息

Huang Zhen, Szostak Jack W

机构信息

Department of Chemistry, Brooklyn College, Ph.D. Programs of Chemistry and Biochemistry, The Graduate School of CUNY, Brooklyn, New York 11210, USA.

出版信息

RNA. 2003 Dec;9(12):1456-63. doi: 10.1261/rna.5990203.

Abstract

Small changes in target specificity can sometimes be achieved, without changing aptamer structure, through mutation of a few bases. Larger changes in target geometry or chemistry may require more radical changes in an aptamer. In the latter case, it is unknown whether structural and functional solutions can still be found in the region of sequence space close to the original aptamer. To investigate these questions, we designed an in vitro selection experiment aimed at evolving specificity of an ATP aptamer. The ATP aptamer makes contacts with both the nucleobase and the sugar. We used an affinity matrix in which GTP was immobilized through the sugar, thus requiring extensive changes in or loss of sugar contact, as well as changes in recognition of the nucleobase. After just five rounds of selection, the pool was dominated by new aptamers falling into three major classes, each with secondary structures distinct from that of the ATP aptamer. The average sequence identity between the original aptamer and new aptamers is 76%. Most of the mutations appear to play roles either in disrupting the original secondary structure or in forming the new secondary structure or the new recognition loops. Our results show that there are novel structures that recognize a significantly different ligand in the region of sequence space close to the ATP aptamer. These examples of the emergence of novel functions and structures from an RNA molecule with a defined specificity and fold provide a new perspective on the evolutionary flexibility and adaptability of RNA.

摘要

有时,在不改变适配体结构的情况下,通过几个碱基的突变就能实现靶标特异性的微小变化。而靶标几何形状或化学性质的较大改变可能需要适配体进行更彻底的变化。在后一种情况下,尚不清楚在靠近原始适配体的序列空间区域内是否仍能找到结构和功能解决方案。为了研究这些问题,我们设计了一项体外筛选实验,旨在进化一种ATP适配体的特异性。该ATP适配体与核碱基和糖都有相互作用。我们使用了一种亲和基质,其中GTP通过糖固定,因此需要糖相互作用发生广泛变化或丧失,同时核碱基识别也需改变。仅经过五轮筛选,文库就被新的适配体主导,这些适配体分为三大类,每一类的二级结构都与ATP适配体不同。原始适配体与新适配体之间的平均序列同一性为76%。大多数突变似乎要么在破坏原始二级结构方面起作用,要么在形成新的二级结构或新的识别环方面起作用。我们的结果表明,在靠近ATP适配体的序列空间区域内存在能够识别显著不同配体的新结构。这些从具有特定特异性和折叠的RNA分子中出现新功能和新结构的例子,为RNA的进化灵活性和适应性提供了新的视角。

相似文献

2
In Vitro Selection of an ATP-Binding TNA Aptamer.
Molecules. 2020 Sep 13;25(18):4194. doi: 10.3390/molecules25184194.
3
Conformational dynamics of an ATP-binding DNA aptamer: a single-molecule study.
J Phys Chem B. 2013 Dec 5;117(48):14994-5003. doi: 10.1021/jp4099667. Epub 2013 Nov 22.
5
Solution structure of an informationally complex high-affinity RNA aptamer to GTP.
RNA. 2006 Apr;12(4):567-79. doi: 10.1261/rna.2251306. Epub 2006 Feb 28.
6
In vitro selection of RNA aptamers specific for cyanocobalamin.
Biochemistry. 1994 Feb 1;33(4):973-82. doi: 10.1021/bi00170a016.
7
A small aptamer with strong and specific recognition of the triphosphate of ATP.
J Am Chem Soc. 2004 Jul 14;126(27):8370-1. doi: 10.1021/ja049171k.
8
Allosteric aptamers: targeted reversibly attenuated probes.
Biochemistry. 2005 Jun 7;44(22):7945-54. doi: 10.1021/bi047507x.
9
Molecular recognition of cAMP by an RNA aptamer.
Biochemistry. 2000 Aug 1;39(30):8983-92. doi: 10.1021/bi000149n.
10
Thermo-responsive molecular switches for ATP using hairpin DNA aptamers.
Biosens Bioelectron. 2011 May 15;26(9):3949-52. doi: 10.1016/j.bios.2011.02.041. Epub 2011 Mar 3.

引用本文的文献

1
Antibody and aptamer-based therapies for osteoarthritis: Application of antibodies and promise of aptamers.
Mol Ther Nucleic Acids. 2025 May 5;36(2):102552. doi: 10.1016/j.omtn.2025.102552. eCollection 2025 Jun 10.
2
Selection of DNA aptamers that prevent the fibrillization of α-synuclein protein in cellular and mouse models.
Mol Ther Nucleic Acids. 2024 Jun 15;35(3):102251. doi: 10.1016/j.omtn.2024.102251. eCollection 2024 Sep 10.
3
Evolution of the substrate specificity of an RNA ligase ribozyme from phosphorimidazole to triphosphate activation.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2407325121. doi: 10.1073/pnas.2407325121. Epub 2024 Sep 13.
4
Emergence of ATP- and GTP-Binding Aptamers from Single RNA Sequences by Error-Prone Replication and Selection.
ChemSystemsChem. 2023 Jul 2;5(5). doi: 10.1002/syst.202300006. eCollection 2023 Sep.
5
Selection of aptamers for AMACR detection from DNA libraries with different primers.
RSC Adv. 2018 May 23;8(34):19067-19074. doi: 10.1039/c8ra01808a. eCollection 2018 May 22.
6
Witnessing the structural evolution of an RNA enzyme.
Elife. 2021 Sep 9;10:e71557. doi: 10.7554/eLife.71557.
7
The hammerhead self-cleaving motif as a precursor to complex endonucleolytic ribozymes.
RNA. 2021 Sep;27(9):1017-1024. doi: 10.1261/rna.078813.121. Epub 2021 Jun 15.
8
Structure of an RNA aptamer in complex with the fluorophore tetramethylrhodamine.
Nucleic Acids Res. 2020 Jan 24;48(2):949-961. doi: 10.1093/nar/gkz1113.
9
Big on Change, Small on Innovation: Evolutionary Consequences of RNA Sequence Duplication.
J Mol Evol. 2019 Sep;87(7-8):240-253. doi: 10.1007/s00239-019-09906-3. Epub 2019 Aug 21.
10
Computational design of three-dimensional RNA structure and function.
Nat Nanotechnol. 2019 Sep;14(9):866-873. doi: 10.1038/s41565-019-0517-8. Epub 2019 Aug 19.

本文引用的文献

1
Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria.
Cell. 2003 May 30;113(5):577-86. doi: 10.1016/s0092-8674(03)00391-x.
2
RNA cleavage by a DNA enzyme with extended chemical functionality.
J Am Chem Soc. 2000 Mar 22;122(11):2433-9. doi: 10.1021/ja993688s.
3
Chance and necessity in the selection of nucleic acid catalysts.
Acc Chem Res. 1996 Feb;29(2):103-10. doi: 10.1021/ar9501378.
4
Controlling small guanine-nucleotide-exchange factor function through cytoplasmic RNA intramers.
Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):4961-5. doi: 10.1073/pnas.091100698.
5
Therapeutic RNA and DNA enzymes.
Biochem Pharmacol. 2000 Oct 15;60(8):1023-6. doi: 10.1016/s0006-2952(00)00395-6.
6
Aptamers as therapeutic and diagnostic agents.
J Biotechnol. 2000 Mar;74(1):5-13. doi: 10.1016/s1389-0352(99)00004-5.
7
One sequence, two ribozymes: implications for the emergence of new ribozyme folds.
Science. 2000 Jul 21;289(5478):448-52. doi: 10.1126/science.289.5478.448.
8
In vitro selection of functional nucleic acids.
Annu Rev Biochem. 1999;68:611-47. doi: 10.1146/annurev.biochem.68.1.611.
10
Design and testing of ribozymes for cancer gene therapy.
Adv Exp Med Biol. 2000;465:293-301. doi: 10.1007/0-306-46817-4_25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验