Suppr超能文献

雌激素及其代谢产物是人类乳腺上皮细胞中的致癌物质。

Estrogen and its metabolites are carcinogenic agents in human breast epithelial cells.

作者信息

Russo Jose, Hasan Lareef M, Balogh Gabriela, Guo Shanchun, Russo Irma H

机构信息

Breast Cancer Research Laboratory, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA.

出版信息

J Steroid Biochem Mol Biol. 2003 Oct;87(1):1-25. doi: 10.1016/s0960-0760(03)00390-x.

Abstract

Estrogens play a crucial role in the development and evolution of human breast cancer. However, it is still unclear whether estrogens are carcinogenic to the human breast. There are three mechanisms that have been considered to be responsible for the carcinogenicity of estrogens: receptor-mediated hormonal activity, a cytochrome P450 (CYP)-mediated metabolic activation, which elicits direct genotoxic effects by increasing mutation rates, and the induction of aneuploidy by estrogen. To fully demonstrate that estrogens are carcinogenic in the human breast through one or more of the mechanisms explained above it will require an experimental system in which, estrogens by itself or one of the metabolites would induce transformation phenotypes indicative of neoplasia in HBEC in vitro and also induce genomic alterations similar to those observed in spontaneous malignancies. In order to mimic the intermittent exposure of HBEC to endogenous estrogens, MCF-10F cells that are ERalpha negative and ERbeta positive were first treated with 0, 0.007, 70 nM and 1 microM of 17beta-estradiol (E(2)), diethylstilbestrol (DES), benz(a)pyrene (BP), progesterone (P), 2-OH-E(2), 4-hydoxy estradiol (4-OH-E(2)) and 16-alpha-OH-E(2) at 72 h and 120 h post-plating. Treatment of HBEC with physiological doses of E(2), 2-OH-E(2), 4-OH-E(2) induce anchorage independent growth, colony formation in agar methocel, and reduced ductulogenic capacity in collagen gel, all phenotypes whose expression are indicative of neoplastic transformation, and that are induced by BP under the same culture conditions. The presence of ERbeta is the pathway used by E(2) to induce colony formation in agar methocel and loss of ductulogenic in collagen gel. This is supported by the fact that either tamoxifen or the pure antiestrogen ICI-182,780 (ICI) abrogated these phenotypes. However, the invasion phenotype, an important marker of tumorigenesis is not modified when the cells are treated in presence of tamoxifen or ICI, suggesting that other pathways may be involved. Although we cannot rule out the possibility, that 4-OH-E(2) may interact with other receptors still not identified, with the data presently available the direct effect of 4-OH-E(2) support the concept that metabolic activation of estrogens mediated by various cytochrome P450 complexes, generating through this pathway reactive intermediates that elicit direct genotoxic effects leading to transformation. This assumption was confirmed when we found that all the transformation phenotypes induced by 4-OH-E(2) were not abrogated when this compound was used in presence of the pure antiestrogen ICI. The novelty of these observations lies in the role of ERbeta in transformation and that this pathway can successfully bypassed by the estrogen metabolite 4-OH-E(2). Genomic DNA was analyzed for the detection of micro-satellite DNA polymorphism using 64 markers covering chromosomes (chr) 3, 11, 13 and 17. We have detected loss of heterozygosity (LOH) in ch13q12.2-12.3 (D13S893) and in ch17q21.1 (D17S800) in E(2), 2-OH-E(2), 4-OH-E(2), E(2) + ICI, E(2) + tamoxifen and BP-treated cells. LOH in ch17q21.1-21.2 (D17S806) was also observed in E(2), 4-OH-E(2), E(2)+ICI, E(2)+tamoxifen and BP-treated cells. MCF-10F cells treated with P or P+E(2) did not show LOH in the any of the markers studied. LOH was strongly associated with the invasion phenotype. Altogether our data indicate that E(2) and its metabolites induce in HBEC LOH in loci of chromosomes 13 and 17, that has been reported in primary breast cancer, that the changes are similar to those induced by the chemical carcinogen (BP) and that the genomic changes were not abrogated by antiestrogens.

摘要

雌激素在人类乳腺癌的发生和发展过程中起着至关重要的作用。然而,雌激素是否对人类乳腺具有致癌性仍不明确。目前认为雌激素致癌性有三种机制:受体介导的激素活性、细胞色素P450(CYP)介导的代谢活化,通过增加突变率引发直接的基因毒性作用,以及雌激素诱导的非整倍体。为了充分证明雌激素通过上述一种或多种机制在人类乳腺中具有致癌性,将需要一个实验系统,在该系统中,雌激素本身或其一种代谢产物能够在体外诱导人乳腺上皮细胞(HBEC)出现指示肿瘤形成的转化表型,并且还能诱导与自发恶性肿瘤中观察到的类似的基因组改变。为了模拟HBEC对内源性雌激素的间歇性暴露,首先将雌激素受体α阴性且雌激素受体β阳性的MCF-10F细胞在接种后72小时和120小时用0、0.007、70 nM和1 μM的17β-雌二醇(E₂)、己烯雌酚(DES)、苯并[a]芘(BP)、孕酮(P)、2-羟基-E₂、4-羟基雌二醇(4-OH-E₂)和16-α-羟基-E₂进行处理。用生理剂量的E₂、2-羟基-E₂、4-羟基-E₂处理HBEC会诱导其在无锚定条件下生长、在琼脂甲基纤维素中形成集落以及在胶原凝胶中导管生成能力降低,所有这些表型的表达都指示肿瘤转化,并且在相同培养条件下由BP诱导产生。雌激素受体β的存在是E₂诱导在琼脂甲基纤维素中形成集落以及在胶原凝胶中导管生成能力丧失所采用的途径。这一观点得到了以下事实的支持:他莫昔芬或纯抗雌激素ICI-182,780(ICI)均可消除这些表型。然而,当细胞在他莫昔芬或ICI存在下进行处理时,侵袭表型(肿瘤发生的一个重要标志物)并未改变,这表明可能涉及其他途径。尽管我们不能排除4-羟基-E₂可能与其他尚未确定的受体相互作用的可能性,但就目前可得的数据而言,4-羟基-E₂的直接作用支持了这样一种概念,即各种细胞色素P450复合物介导的雌激素代谢活化,通过该途径产生引发直接基因毒性作用导致转化的反应性中间体。当我们发现当在纯抗雌激素ICI存在下使用该化合物时,4-羟基-E₂诱导的所有转化表型均未被消除时,这一假设得到了证实。这些观察结果的新颖之处在于雌激素受体β在转化中的作用,以及雌激素代谢产物4-羟基-E₂能够成功绕过这一途径。使用覆盖3号、11号、13号和17号染色体的64个标记对基因组DNA进行分析以检测微卫星DNA多态性。我们在E₂、2-羟基-E₂、4-羟基-E₂、E₂ + ICI、E₂ + 他莫昔芬和BP处理的细胞中检测到13号染色体q12.2 - 12.3区域(D13S893)和17号染色体q21.1区域(D17S800)的杂合性缺失(LOH)。在E₂、4-羟基-E₂、E₂ + ICI、E₂ + 他莫昔芬和BP处理的细胞中还观察到17号染色体q21.1 - 21.2区域(D17S806)的LOH。用P或P + E₂处理的MCF-10F细胞在所研究的任何标记中均未显示LOH。LOH与侵袭表型密切相关。总之,我们的数据表明E₂及其代谢产物在HBEC中诱导13号和17号染色体位点的LOH,这在原发性乳腺癌中已有报道,这些变化与化学致癌物(BP)诱导的变化相似,并且基因组变化未被抗雌激素消除。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验