van Herk Marcel, Witte Marnix, van der Geer Joris, Schneider Christoph, Lebesque Joos V
Radiotherapy Department, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
Int J Radiat Oncol Biol Phys. 2003 Dec 1;57(5):1460-71. doi: 10.1016/j.ijrobp.2003.08.026.
We are developing a system to model the effect of random and systematic geometric errors on radiotherapy delivery. The purpose of this study was to investigate biologic and physical fractionation effects of random geometric errors and respiration motion and compare the resulting dose distributions with Gaussian blurring of the planned dose.
A hypothetical dose distribution with Gaussian penumbra was used. Random errors drawn from a normal distribution, optionally combined with simulated respiration motion (in the cranio-caudal direction), were used to displace the dose distribution for N simulated fractions. To simulate biologic effects of fractionation, the physical dose was converted to a biologically effective dose using the linear-quadratic model (including repopulation), then summed and converted back to physical dose for comparison. Differences between dose distributions were quantified in terms of the distance between selected isodose levels.
A limited number of fractions led to an uncertainty in the position of isodose levels in the total dose with as standard deviation (SD) the SD of the random error divided by radical N. Due to biologic fractionation effects, the total dose distribution became slightly wider: 0.4 mm for alpha/beta = 1 Gy and a random error SD of 3 mm. The widening increased with random error and reduced with increasing alpha/beta but does not depend on the number of fractions or on repopulation. Respiration motion caused an asymmetric deviation in the shape of the total dose distribution, but no additional dose widening was seen from the biologic effect of fractionation. With a random error SD of 3 mm and respiration amplitude, A, of 1 cm or less (SD < 0.36 cm), the asymmetry was negligible. For larger respiration amplitudes (combined with the same random error), the shift of the 95% isodose level was about 0.25A caudally, and 0.45A cranially.
Gaussian blurring with a combined SD of organ motion, setup error, and respiration motion is a valid approximation for the effect of purely random errors in fractionated radiotherapy. For respiration motion in excess of 1 cm in amplitude, isodose lines shift in a distinctly asymmetric fashion and asymmetric margins need to be used.
我们正在开发一个系统,用于模拟随机和系统性几何误差对放射治疗剂量传递的影响。本研究的目的是研究随机几何误差和呼吸运动的生物学和物理分次照射效应,并将所得剂量分布与计划剂量的高斯模糊进行比较。
使用具有高斯半值层的假设剂量分布。从正态分布中抽取的随机误差(可选择与模拟呼吸运动相结合,沿头脚方向)用于将剂量分布在N次模拟分次中进行位移。为了模拟分次照射的生物学效应,使用线性二次模型(包括再增殖)将物理剂量转换为生物学有效剂量,然后求和并转换回物理剂量进行比较。剂量分布之间的差异通过选定等剂量水平之间的距离来量化。
有限次数的分次导致总剂量中等剂量水平位置的不确定性,标准差(SD)为随机误差的SD除以根号N。由于生物学分次照射效应,总剂量分布略有变宽:对于α/β = 1 Gy和随机误差SD为3 mm,变宽0.4 mm。变宽随随机误差增加而增加,随α/β增加而减小,但不取决于分次次数或再增殖。呼吸运动导致总剂量分布形状出现不对称偏差,但未观察到分次照射生物学效应导致的额外剂量变宽。当随机误差SD为3 mm且呼吸幅度A为1 cm或更小(SD < 0.36 cm)时,不对称性可忽略不计。对于较大的呼吸幅度(结合相同的随机误差),95%等剂量水平的移位在尾侧约为0.25A,在头侧约为0.45A。
对于分次放射治疗中纯随机误差的影响,将器官运动、摆位误差和呼吸运动的组合标准差进行高斯模糊是一种有效的近似方法。对于幅度超过1 cm的呼吸运动,等剂量线以明显不对称的方式移位,需要使用不对称边界。