Suppr超能文献

将σ70与RNA聚合酶拴系揭示了σ因子在体内的高活性以及在启动子远端位置的σ70依赖性暂停。

Tethering sigma70 to RNA polymerase reveals high in vivo activity of sigma factors and sigma70-dependent pausing at promoter-distal locations.

作者信息

Mooney Rachel Anne, Landick Robert

机构信息

Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

出版信息

Genes Dev. 2003 Nov 15;17(22):2839-51. doi: 10.1101/gad.1142203.

Abstract

Bacterial sigma factors compete for binding to RNA polymerase (RNAP) to control promoter selection, and in some cases interact with RNAP to regulate at least the early stages of transcript elongation. However, the effective concentration of sigmas in vivo, and the extent to which sigma can regulate transcript elongation generally, are unknown. We report that tethering sigma70 to all RNAP molecules via genetic fusion of rpoD to rpoC (encoding sigma70 and RNAP's beta' subunit, respectively) yields viable Escherichia coli strains in which alternative sigma-factor function is not impaired. beta'::sigma70 RNAP transcribed DNA normally in vitro, but allowed sigma70-dependent pausing at extended -10-like sequences anywhere in a transcriptional unit. Based on measurement of the effective concentration of tethered sigma70, we conclude that the effective concentration of sigma70 in E. coli (i.e., its thermodynamic activity) is close to its bulk concentration. At this level, sigma70 would be a bona fide elongation factor able to direct transcriptional pausing even after its release from RNAP during promoter escape.

摘要

细菌的σ因子竞争与RNA聚合酶(RNAP)结合以控制启动子的选择,并且在某些情况下与RNAP相互作用以至少调节转录延伸的早期阶段。然而,体内σ因子的有效浓度以及σ因子一般可调节转录延伸的程度尚不清楚。我们报道,通过将rpoD与rpoC(分别编码σ70和RNAP的β'亚基)进行基因融合,将σ70拴系到所有RNAP分子上,可产生可行的大肠杆菌菌株,其中替代σ因子的功能未受损。β'::σ70 RNAP在体外正常转录DNA,但在转录单位中的任何位置的延伸的-10样序列处允许依赖σ70的暂停。基于对拴系的σ70有效浓度的测量,我们得出结论,大肠杆菌中σ70的有效浓度(即其热力学活性)接近其总体浓度。在此水平下,σ70将是一种真正的延伸因子,即使在启动子逃逸过程中从RNAP释放后也能够指导转录暂停。

相似文献

6
Negative regulation by RpoS: a case of sigma factor competition.
Mol Microbiol. 1998 Aug;29(4):1039-51. doi: 10.1046/j.1365-2958.1998.00990.x.
8
Mutations in the alpha and sigma-70 subunits of RNA polymerase affect expression of the mer operon.
J Bacteriol. 1997 Mar;179(5):1787-95. doi: 10.1128/jb.179.5.1787-1795.1997.
10
Mutations in the 1.1 subdomain of Escherichia coli sigma factor sigma70 and disruption of its overall structure.
Eur J Biochem. 1997 Mar 1;244(2):613-8. doi: 10.1111/j.1432-1033.1997.00613.x.

引用本文的文献

1
Principles of gene regulation quantitatively connect DNA to RNA and proteins in bacteria.
Science. 2022 Dec 9;378(6624):eabk2066. doi: 10.1126/science.abk2066.
2
Structural and mechanistic basis of σ-dependent transcriptional pausing.
Proc Natl Acad Sci U S A. 2022 Jun 7;119(23):e2201301119. doi: 10.1073/pnas.2201301119. Epub 2022 Jun 2.
3
A non-native C-terminal extension of the β' subunit compromises RNA polymerase and Rho functions.
Mol Microbiol. 2022 Apr;117(4):871-885. doi: 10.1111/mmi.14879. Epub 2022 Feb 3.
5
Transcription complexes as RNA chaperones.
Transcription. 2021 Aug;12(4):126-155. doi: 10.1080/21541264.2021.1985931. Epub 2021 Nov 1.
6
Diverse and unified mechanisms of transcription initiation in bacteria.
Nat Rev Microbiol. 2021 Feb;19(2):95-109. doi: 10.1038/s41579-020-00450-2. Epub 2020 Oct 29.
7
Mechanisms of Transcriptional Pausing in Bacteria.
J Mol Biol. 2019 Sep 20;431(20):4007-4029. doi: 10.1016/j.jmb.2019.07.017. Epub 2019 Jul 13.
8
A universal transcription pause sequence is an element of initiation factor σ70-dependent pausing.
Nucleic Acids Res. 2016 Aug 19;44(14):6732-40. doi: 10.1093/nar/gkw285. Epub 2016 Apr 20.
9
Nascent RNA length dictates opposing effects of NusA on antitermination.
Nucleic Acids Res. 2016 Jun 20;44(11):5378-89. doi: 10.1093/nar/gkw198. Epub 2016 Mar 28.
10
Bacterial RNA polymerase can retain σ70 throughout transcription.
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):602-7. doi: 10.1073/pnas.1513899113. Epub 2016 Jan 5.

本文引用的文献

1
2
The transcription cycle of RNA polymerase II in living cells.
J Cell Biol. 2002 Dec 9;159(5):777-82. doi: 10.1083/jcb.200206019.
4
Regulation of sigma factor competition by the alarmone ppGpp.
Genes Dev. 2002 May 15;16(10):1260-70. doi: 10.1101/gad.227902.
5
Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex.
Science. 2002 May 17;296(5571):1285-90. doi: 10.1126/science.1069595.
7
Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution.
Nature. 2002 Jun 13;417(6890):712-9. doi: 10.1038/nature752. Epub 2002 May 8.
8
Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2).
Nature. 2002 May 9;417(6885):141-7. doi: 10.1038/417141a.
9
Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo.
Mol Cell. 2002 Apr;9(4):799-809. doi: 10.1016/s1097-2765(02)00502-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验