Mekler Vladimir, Kortkhonjia Ekaterine, Mukhopadhyay Jayanta, Knight Jennifer, Revyakin Andrei, Kapanidis Achillefs N, Niu Wei, Ebright Yon W, Levy Ronald, Ebright Richard H
Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
Cell. 2002 Mar 8;108(5):599-614. doi: 10.1016/s0092-8674(02)00667-0.
We have used systematic fluorescence resonance energy transfer and distance-constrained docking to define the three-dimensional structures of bacterial RNA polymerase holoenzyme and the bacterial RNA polymerase-promoter open complex in solution. The structures provide a framework for understanding sigma(70)-(RNA polymerase core), sigma(70)-DNA, and sigma(70)-RNA interactions. The positions of sigma(70) regions 1.2, 2, 3, and 4 are similar in holoenzyme and open complex. In contrast, the position of sigma(70) region 1.1 differs dramatically in holoenzyme and open complex. In holoenzyme, region 1.1 is located within the active-center cleft, apparently serving as a "molecular mimic" of DNA, but, in open complex, region 1.1 is located outside the active center cleft. The approach described here should be applicable to the analysis of other nanometer-scale complexes.
我们运用了系统的荧光共振能量转移和距离约束对接技术来确定溶液中细菌RNA聚合酶全酶以及细菌RNA聚合酶-启动子开放复合物的三维结构。这些结构为理解σ⁷⁰-(RNA聚合酶核心)、σ⁷⁰-DNA和σ⁷⁰-RNA相互作用提供了一个框架。在全酶和开放复合物中,σ⁷⁰的1.2、2、3和4区的位置相似。相比之下,σ⁷⁰的1.1区在全酶和开放复合物中的位置差异显著。在全酶中,1.1区位于活性中心裂隙内,显然充当DNA的“分子模拟物”,但在开放复合物中,1.1区位于活性中心裂隙之外。这里描述的方法应该适用于其他纳米级复合物的分析。