Suppr超能文献

配体与转录因子 NusA 之间的动态竞争调控核糖开关介导的转录调控。

Dynamic competition between a ligand and transcription factor NusA governs riboswitch-mediated transcription regulation.

机构信息

Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109.

Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109.

出版信息

Proc Natl Acad Sci U S A. 2021 Nov 23;118(47). doi: 10.1073/pnas.2109026118.

Abstract

Cotranscriptional RNA folding is widely assumed to influence the timely control of gene expression, but our understanding remains limited. In bacteria, the fluoride (F)-sensing riboswitch is a transcriptional control element essential to defend against toxic F levels. Using this model riboswitch, we find that its ligand F and essential bacterial transcription factor NusA compete to bind the cotranscriptionally folding RNA, opposing each other's modulation of downstream pausing and termination by RNA polymerase. Single-molecule fluorescence assays probing active transcription elongation complexes discover that NusA unexpectedly binds highly reversibly, frequently interrogating the complex for emerging, cotranscriptionally folding RNA duplexes. NusA thus fine-tunes the transcription rate in dependence of the ligand-responsive higher-order structure of the riboswitch. At the high NusA concentrations found intracellularly, this dynamic modulation is expected to lead to adaptive bacterial transcription regulation with fast response times.

摘要

共转录 RNA 折叠被广泛认为会影响基因表达的适时控制,但我们的理解仍然有限。在细菌中,氟(F)感应核糖开关是一种转录控制元件,对于抵御有毒 F 水平至关重要。使用这个模型核糖开关,我们发现它的配体 F 和必需的细菌转录因子 NusA 竞争结合共转录折叠的 RNA,相互拮抗彼此对 RNA 聚合酶下游暂停和终止的调节。探测活跃转录延伸复合物的单分子荧光分析发现,NusA 出人意料地高度可逆结合,经常询问复合物中是否有新出现的共转录折叠 RNA 双链。因此,NusA 根据核糖开关配体响应的高级结构来精细调节转录速率。在细胞内发现的高浓度 NusA 下,这种动态调节预计会导致具有快速响应时间的适应性细菌转录调节。

相似文献

2
Structural Basis for NusA Stabilized Transcriptional Pausing.
Mol Cell. 2018 Mar 1;69(5):816-827.e4. doi: 10.1016/j.molcel.2018.02.008.
3
Transcription Elongation Factor NusA Is a General Antagonist of Rho-dependent Termination in Escherichia coli.
J Biol Chem. 2016 Apr 8;291(15):8090-108. doi: 10.1074/jbc.M115.701268. Epub 2016 Feb 12.
4
Transcription is regulated by NusA:NusG interaction.
Nucleic Acids Res. 2016 Jul 8;44(12):5971-82. doi: 10.1093/nar/gkw423. Epub 2016 May 12.
5
Pre-termination Transcription Complex: Structure and Function.
Mol Cell. 2021 Jan 21;81(2):281-292.e8. doi: 10.1016/j.molcel.2020.11.013. Epub 2020 Dec 8.
7
Transcriptome-Wide Effects of NusA on RNA Polymerase Pausing in Bacillus subtilis.
J Bacteriol. 2022 May 17;204(5):e0053421. doi: 10.1128/jb.00534-21. Epub 2022 Mar 8.
8
Structural Characterization of the Cotranscriptional Folding of the Thiamin Pyrophosphate Sensing Riboswitch in .
Biochemistry. 2024 Jul 2;63(13):1608-1620. doi: 10.1021/acs.biochem.3c00665. Epub 2024 Jun 12.
9
Role of a hairpin-stabilized pause in the riboswitch function.
RNA Biol. 2019 Aug;16(8):1066-1073. doi: 10.1080/15476286.2019.1616354. Epub 2019 May 20.

引用本文的文献

1
Nascent RNA Folding and RNP Assembly Revealed by Single-molecule Microscopy.
J Mol Biol. 2025 Aug 7:169365. doi: 10.1016/j.jmb.2025.169365.
2
Observation of SAM-VI Riboswitch Dynamics Using Single-Molecule FRET.
Biomolecules. 2025 Jun 9;15(6):841. doi: 10.3390/biom15060841.
3
Co-transcriptional folding orchestrates sequential multi-effector sensing by a glycine tandem riboswitch.
bioRxiv. 2025 May 30:2025.05.28.656632. doi: 10.1101/2025.05.28.656632.
4
Applying the brakes to transcription: regulation of gene expression by RNA polymerase pausing.
J Bacteriol. 2025 Jul 24;207(7):e0008425. doi: 10.1128/jb.00084-25. Epub 2025 Jun 6.
5
Sequential structure probing of cotranscriptional RNA folding intermediates.
Nat Commun. 2025 Jun 1;16(1):5085. doi: 10.1038/s41467-025-60425-w.
6
RNA folding kinetics control riboswitch sensitivity in vivo.
Nat Commun. 2025 Jan 22;16(1):953. doi: 10.1038/s41467-024-55601-3.
7
Sequential structure probing of cotranscriptional RNA folding intermediates.
bioRxiv. 2024 Oct 17:2024.10.14.618260. doi: 10.1101/2024.10.14.618260.
8
Divergent molecular assembly and catalytic mechanisms between bacterial and archaeal RNase P in pre-tRNA cleavage.
Proc Natl Acad Sci U S A. 2024 Oct 22;121(43):e2407579121. doi: 10.1073/pnas.2407579121. Epub 2024 Oct 16.
9
Opportunities for Riboswitch Inhibition by Targeting Co-Transcriptional RNA Folding Events.
Int J Mol Sci. 2024 Sep 29;25(19):10495. doi: 10.3390/ijms251910495.
10
Functional Validation of SAM Riboswitch Element A from .
Biochemistry. 2024 Oct 15;63(20):2621-2631. doi: 10.1021/acs.biochem.4c00247. Epub 2024 Sep 25.

本文引用的文献

1
A translational riboswitch coordinates nascent transcription-translation coupling.
Proc Natl Acad Sci U S A. 2021 Apr 20;118(16). doi: 10.1073/pnas.2023426118.
2
Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription.
Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32348-32357. doi: 10.1073/pnas.2011224117. Epub 2020 Dec 8.
3
Steps toward translocation-independent RNA polymerase inactivation by terminator ATPase ρ.
Science. 2021 Jan 1;371(6524). doi: 10.1126/science.abd1673. Epub 2020 Nov 26.
4
Widespread Protection of RNA Cleavage Sites by a Riboswitch Aptamer that Folds as a Compact Obstacle to Scanning by RNase E.
Mol Cell. 2021 Jan 7;81(1):127-138.e4. doi: 10.1016/j.molcel.2020.10.025. Epub 2020 Nov 18.
5
Structure-Based Mechanisms of a Molecular RNA Polymerase/Chaperone Machine Required for Ribosome Biosynthesis.
Mol Cell. 2020 Sep 17;79(6):1024-1036.e5. doi: 10.1016/j.molcel.2020.08.010. Epub 2020 Aug 31.
6
Structural basis of transcription-translation coupling.
Science. 2020 Sep 11;369(6509):1359-1365. doi: 10.1126/science.abb5317. Epub 2020 Aug 20.
7
Evolutionary causes and consequences of bacterial antibiotic persistence.
Nat Rev Microbiol. 2020 Sep;18(9):479-490. doi: 10.1038/s41579-020-0378-z. Epub 2020 May 27.
8
Riboswitch regulation mechanisms: RNA, metabolites and regulatory proteins.
Biochim Biophys Acta Gene Regul Mech. 2020 Mar;1863(3):194501. doi: 10.1016/j.bbagrm.2020.194501. Epub 2020 Feb 7.
9
Alternative transcription cycle for bacterial RNA polymerase.
Nat Commun. 2020 Jan 23;11(1):448. doi: 10.1038/s41467-019-14208-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验