Suppr超能文献

预防和修复氧化性DNA损伤的相互作用途径。

The interacting pathways for prevention and repair of oxidative DNA damage.

作者信息

Slupphaug Geir, Kavli Bodil, Krokan Hans E

机构信息

Institute of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway.

出版信息

Mutat Res. 2003 Oct 29;531(1-2):231-51. doi: 10.1016/j.mrfmmm.2003.06.002.

Abstract

Genomes are damaged by spontaneous decay, chemicals, radiation and replication errors. DNA damage may cause mutations resulting in inheritable disease, cancer and ageing. Oxidative stress from ionising radiation and oxidative metabolism causes base damage, as well as strand breaks in DNA. Base damage is mostly indirect and caused by reactive oxygen species (ROS) generated, e.g. O2(.-) (superoxide radical), OH. (hydroxyl radical) and H2O2 (hydrogen peroxide). ROS also oxidise RNA, lipids, proteins and nucleotides. The first line of defence against ROS is enzymatic inactivation of superoxide by superoxide dismutase and inactivation of the less toxic hydrogen peroxide by catalase. As a second line of defence, incorporation of damaged bases into DNA is prevented by enzymes that hydrolyse oxidised dNTPs (e.g. 8-oxodGTP) to the corresponding dNMP. The third line of defence is repair of oxidative damage in DNA by an intricate network of DNA repair mechanisms. Base excision repair (BER), transcription-coupled repair (TCR), global genome repair (GGR), mismatch repair (MMR), translesion synthesis (TLS), homologous recombination (HR) and non-homologous end-joining (NHEJ) all contribute to repair of oxidative DNA damage. These mechanisms are also integrated with other cellular processes such as cell cycle regulation, transcription and replication and even use some common proteins. BER is the major pathway for repair of oxidative base damage, with TCR and MMR being important backup pathways for repair of transcribed strands and newly replicated strands, respectively. In recent years, several new DNA glycosylases that initiate BER of oxidative damage have been identified. These have specificities overlapping with previously known DNA glycosylases and serve as backups, and may have distinct roles as well. Thus, there is both inter- and intra-pathway complementation in repair of oxidative base damage, explaining the limited effects of absence of single DNA glycosylases in animal model systems.

摘要

基因组会因自发衰变、化学物质、辐射和复制错误而受损。DNA损伤可能导致突变,进而引发遗传性疾病、癌症和衰老。电离辐射和氧化代谢产生的氧化应激会导致碱基损伤以及DNA链断裂。碱基损伤大多是间接的,由产生的活性氧(ROS)引起,例如O2(.-)(超氧阴离子自由基)、OH.(羟基自由基)和H2O2(过氧化氢)。ROS还会氧化RNA、脂质、蛋白质和核苷酸。对抗ROS的第一道防线是通过超氧化物歧化酶对超氧化物进行酶促失活,并通过过氧化氢酶对毒性较小的过氧化氢进行失活。作为第二道防线,水解氧化的dNTP(例如8-氧代-dGTP)为相应dNMP的酶可防止受损碱基掺入DNA。第三道防线是通过复杂的DNA修复机制网络修复DNA中的氧化损伤。碱基切除修复(BER)、转录偶联修复(TCR)、全基因组修复(GGR)、错配修复(MMR)、跨损伤合成(TLS)、同源重组(HR)和非同源末端连接(NHEJ)都有助于修复氧化的DNA损伤。这些机制还与其他细胞过程整合在一起,如细胞周期调控、转录和复制,甚至使用一些共同的蛋白质。BER是修复氧化碱基损伤的主要途径,TCR和MMR分别是修复转录链和新复制链的重要备用途径。近年来,已鉴定出几种引发氧化损伤BER的新型DNA糖基化酶。它们的特异性与先前已知的DNA糖基化酶重叠并作为备用,并且可能也具有独特的作用。因此,在氧化碱基损伤的修复中存在途径间和途径内的互补,这解释了动物模型系统中缺乏单个DNA糖基化酶时影响有限的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验